Discovery of Active Antibacterial Fractions of Different Plant Part Extracts of clove (Syzigium aromaticum) Against Streptococcus mutans
DOI:
https://doi.org/10.18006/2024.12(4).625.633Keywords:
Antibacterial, Cloves, Dental caries, Syzigium aromaticum, Streptococcus mutansAbstract
Nowadays, dental cavities caused by Streptococcus mutans are a major focus of research in Indonesia. While several antibiotics are available to combat this bacterium, concerns about antibiotic resistance have prompted researchers to explore natural remedies. Clove (Syzigium aromaticum) is a commonly studied natural remedy against dental cavities and S. mutans. Among the different parts of the clove plant, clove bud is the most widely used against dental cavities or S. mutans, and the potential of other clove parts has not been thoroughly explored. Identifying which parts of the clove plant have higher concentrations of active ingredients and exhibit the strongest antibacterial activity is important. Therefore, this study evaluated the antibacterial activity of three different parts, i.e., leaf, stems, and buds of the clove plant ethanolic extracts against S. mutans. The ethanolic extracts of clove leaf, stems, and buds were prepared using the maceration method with 70% ethanol, and their activity against S. mutans was tested using the disc diffusion method at three different concentrations (10%, 5%, 2.5% b/v). Fractionation was carried out using hexane and water to obtain two fractions: hexane and water fraction. These fractions were then subjected to antibacterial assays. The ethanolic leaf, stems, and bud extracts exhibited varying antibacterial activity levels. The best activity was observed with the 10% clove bud ethanolic extract, which produced an inhibition zone of 20.83 ± 0.77 mm. The leaf and stem extracts showed inhibition zones of 16.38 ± 3.84 mm and 17.95 ± 5.15 mm, respectively. Furthermore, the hexane-soluble fraction of the clove bud displayed the highest activity with an inhibition zone diameter of 23.7 ± 3.21 mm at 10%. This activity was twice as high as ampicillin, used as the positive control. In conclusion, clove bud remains the best source of antibacterial compounds against S. mutans. Fractionation of the bud extract using hexane can significantly enhance its activity. Further investigation should be conducted to optimize the effectiveness of this active fraction for use as an anti-dental caries treatment.
References
Abubakar, A. R., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy & bioallied sciences, 12(1), 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19 DOI: https://doi.org/10.4103/jpbs.JPBS_175_19
Ahmadi, H., Ebrahimi, A., & Ahmadi, F. (2021). Antibiotic Therapy in Dentistry. International journal of dentistry, 2021, 6667624. https://doi.org/10.1155/2021/6667624 DOI: https://doi.org/10.1155/2021/6667624
Aripin, D., Suwargiani, A.A., Susilawati, S., Putri, F.M., Hamdani, A.M., Yolanda, Y., Suryanti, N., & Mohd Yusof, Z.Y. (2024). Detection of Caries Coronal Condition Prevalence of Permanent Teeth in Children Using the International Caries Detection and Assessment System for Measuring Dental Caries: A Cross-Sectional Study. The Open Dentistry Journal, 18, e18742106275531. DOI: 10.2174/0118742106275531240219044930. DOI: https://doi.org/10.2174/0118742106275531240219044930
Cheng, X., He, F., Si, M., Sun, P., & Chen, Q. (2022). Effects of Antibiotic Use on Saliva Antibody Content and Oral Microbiota in Sprague Dawley Rats. Frontiers in Cellular and Infection Microbiology, 12, 721691. https://doi.org/10.3389/fcimb.2022.721691 DOI: https://doi.org/10.3389/fcimb.2022.721691
Cieplik, F., Jakubovics, N. S., Buchalla, W., Maisch, T., Hellwig, E., & Al-Ahmad, A. (2019). Resistance Toward Chlorhexidine in Oral Bacteria - Is There Cause for Concern?. Frontiers in microbiology, 10, 587. https://doi.org/10.3389/fmicb.2019.00587 DOI: https://doi.org/10.3389/fmicb.2019.00587
Clinical Laboratory Standard Institute. (2012). Performance standards for antimicrobial susceptibility testing: twenty-second informational supplement (M100-S22 V ed.). Clinical Laboratory Standard Institute.
Cortés-Rojas, D. F., de Souza, C. R., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific journal of tropical biomedicine, 4(2), 90–96. https://doi.org/10.1016/S2221-1691(14)60215-X DOI: https://doi.org/10.1016/S2221-1691(14)60215-X
Cui, T., Luo, W., Xu, L., Yang, B., Zhao, W., & Cang, H. (2019). Progress of Antimicrobial Discovery Against the Major Cariogenic Pathogen Streptococcus mutans. Current issues in molecular biology, 32, 601–644. https://doi.org/10.21775/cimb.032.601 DOI: https://doi.org/10.21775/cimb.032.601
de Oliveira Carvalho, I., Purgato, G. A., Píccolo, M. S., Pizziolo, V. R., Coelho, R. R., Diaz-Muñoz, G., & Alves Nogueira Diaz, M. (2020). In vitro anticariogenic and antibiofilm activities of toothpastes formulated with essential oils. Archives of oral biology, 117, 104834. https://doi.org/10.1016/j.archoralbio.2020.104834 DOI: https://doi.org/10.1016/j.archoralbio.2020.104834
Dhamodhar P, Murthy, S., Channarayappa, Ramesh, K., Gopinath, N., Shantha kumar, S.S., & Varuvelil, G.J. (2014). Antibacterial efficacy of Syzygium aromaticum extracts on multi-drug resistant Streptococcus mutans isolated from dental plaque samples. Journal of Biochemical Technology, 3, 155–157.
Dwivedi, D., & Singh, V. (2015). Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. Journal of traditional and complementary medicine, 6(1), 57–61. https://doi.org/10.1016/j.jtcme.2014.11.025 DOI: https://doi.org/10.1016/j.jtcme.2014.11.025
Folliero, V., Dell'Annunziata, F., Roscetto, E., Amato, A., Gasparro, R., Zannella, C., Casolaro, V., De Filippis, A., Catania, M. R., Franci, G., & Galdiero, M. (2022). Rhein: A novel antibacterial compound against Streptococcus mutans infection. Microbiological research, 261, 127062. https://doi.org/10.1016/j.micres.2022.127062 DOI: https://doi.org/10.1016/j.micres.2022.127062
Gupta, C., & Prakash, D. (2021). Comparative Study of the Antimicrobial Activity of Clove Oil and Clove Extract on Oral Pathogens. Dentistry Open Journal, 7(1), 12–15. https://doi.org/10.17140/DOJ-7-144 DOI: https://doi.org/10.17140/DOJ-7-144
Haque, M., Sartelli, M., & Haque, S. Z. (2019). Dental Infection and Resistance-Global Health Consequences. Dentistry journal, 7(1), 22. https://doi.org/10.3390/dj7010022 DOI: https://doi.org/10.3390/dj7010022
Hemalatha, R., Nivetha, P., Mohanapriya, C., Sharmila, G., Muthukumaran, C., & Gopinath, M. (2016). Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. Journal of food science and technology, 53(2), 1189–1198. https://doi.org/10.1007/s13197-015-2108-5 DOI: https://doi.org/10.1007/s13197-015-2108-5
Heta, S., & Robo, I. (2018). The Side Effects of the Most Commonly Used Group of Antibiotics in Periodontal Treatments. Medical sciences (Basel, Switzerland), 6(1), 6. https://doi.org/10.3390/medsci6010006 DOI: https://doi.org/10.3390/medsci6010006
Hiwandika, N., Sudrajat, S.E., & Rahayu, I. (2021). Antibacterial and Antifungal Activity of Clove Extract (Syzygium Aromaticum). Eureka Herba Indonesia, 2(2): 86–94. DOI: https://doi.org/10.37275/ehi.v2i2.18
Jacob, B., & Nivedhitha, M.S. (2018) Comparative Assessment of the Antibacterial Efficacy of Natural Products and Chlorhexidine Mouthwash against Streptococcus mutans: A Systematic Review. Journal of Clinical & Diagnostic Research, 12(12), ZE01-ZE07. DOI: https://doi.org/10.7860/JCDR/2018/36569.12335
Jafri, H., Ahmad, I., Jafri, H., & Ahmad, I. (2021). In Vitro Efficacy of Clove Oil and Eugenol against Staphylococcus spp and Streptococcus mutans on Hydrophobicity, Hemolysin Production and Biofilms and their Synergy with Antibiotics. Advances in Microbiology, 11(2), 117–143. https://doi.org/10.4236/AIM.2021.112009 DOI: https://doi.org/10.4236/aim.2021.112009
Kumar, U., Kumar, B., Bhandari, A., & Kumar, Y. (2010). Phytochemical investigation and comparison of antimicrobial screening of clove and cardamom. International Journal of Pharmaceutical Sciences and Research, 1(12), 138–147.
Lee, S. H., Choi, B. K., & Kim, Y. J. (2012). The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Archives of oral biology, 57(6), 697–703. https://doi.org/10.1016/ j.archoralbio.2011.12.001 DOI: https://doi.org/10.1016/j.archoralbio.2011.12.001
Liao, Y., Brandt, B. W., Li, J., Crielaard, W., Van Loveren, C., & Deng, D. M. (2017). Fluoride resistance in Streptococcus mutans: a mini review. Journal of oral microbiology, 9(1), 1344509. https://doi.org/10.1080/20002297.2017.1344509 DOI: https://doi.org/10.1080/20002297.2017.1344509
Mak, K.K., Kamal, M. B., Ayuba, S. B., Sakirolla, R., Kang, Y.B., et al. (2019). A Comprehensive Review on Eugenol's Antimicrobial Properties and Industry Applications: A Transformation from Ethnomedicine to Industry. Pharmacognosy Reviews, 13(25), 1-9. https://doi.org/10.4103/phrev.phrev_46_18 DOI: https://doi.org/10.4103/phrev.phrev_46_18
Mann, A. (2012). Phytochemical constituents and antimicrobial and grain protectant activities of clove basil (Ocimum gratissimum L.) grown in Nigeria. International Journal of plant research, 2(1), 51-58. DOI: https://doi.org/10.5923/j.plant.20120201.08
Moon, S. E., Kim, H. Y., & Cha, J. D. (2011). Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Archives of Oral Biology, 56(9), 907–916. https://doi.org/10.1016/J.ARCHORALBIO.2011.02.005 DOI: https://doi.org/10.1016/j.archoralbio.2011.02.005
Mostafa, A. A. F., Yassin, M.T., Al–Askar, A.A., & Al-Otibi, F.O. (2023). Phytochemical Analysis, Antiproliferative and Antifungal Activities of Different Syzygium aromaticum Solvent Extracts. Journal of King Saud University-Science, 35(1), 102362. DOI: https://doi.org/10.1016/j.jksus.2022.102362
Nurdjannah, N., Besar, B., Dan, P., Pasca, P., & Pertanian, P. (2016). Diversifikasi Penggunaan Cengkeh. Perspektif, 3(2), 61–70. https://doi.org/10.21082/p.v3n2.2004.61-70
Park, H. S., Jun, D.Y., Fang, Z., Woo, M.H., & Kim, Y.H. (2008). Antimicrobial Activity of Seeds of Zanthoxylum piperitum against Oral Pathogen Streptococcus mutans. Journal of Life Science, 18(2), 167–74. DOI: https://doi.org/10.5352/JLS.2008.18.2.167
Pathak, S. B., Niranjan, K., Padh, H., & Rajani, M. (2004). TLC densitometric method for the quantification of eugenol and gallic acid in clove. Chromatographia, 60(3), 241-244. DOI: https://doi.org/10.1365/s10337-004-0373-y
Pieri, F. A., Souza, M. C. de C., Vermelho, L. L. R., Vermelho, M. L. R., Perciano, P. G., Vargas, F. S., Borges, A. P. B., da Veiga-Junior, V. F., & Moreira, M. A. S. (2016). Use of β-caryophyllene to combat bacterial dental plaque formation in dogs. BMC Veterinary Research, 12(1), 1–8. https://doi.org/10.1186/S12917-016-0842-1/FIGURES/3 DOI: https://doi.org/10.1186/s12917-016-0842-1
Qiu, W., Zhou, Y., Li, Z., Huang, T., Xiao, Y., et al. (2020). Application of Antibiotics/Antimicrobial Agents on Dental Caries. BioMed research international, 2020, 5658212. https://doi.org/10.1155/2020/5658212 DOI: https://doi.org/10.1155/2020/5658212
Rasul, M. G. (2018). Extraction, Isolation and Characterization of Natural Products from Medicinal Plants. International Journal of Basic Sciences and Applied Computing, 2(6), 1-6.
Silvestre, C. I., Santos, J. L., Lima, J. L., & Zagatto, E. A. (2009). Liquid-liquid extraction in flow analysis: A critical review. Analytica chimica acta, 652(1-2), 54–65. https://doi.org/10.1016/ j.aca.2009.05.042. DOI: https://doi.org/10.1016/j.aca.2009.05.042
Sivapathasundharam, B., & Raghu, A. R. (2020). Dental caries. In Shafer's Textbook of Oral Pathology, 9th Edition (pp. 369–403). Elsevier RELX India Pvt Ltd.
Sohilait, H. J., Kainama, H., Nindatu, M., Sohilait, H. J., Kainama, H., & Nindatu, M. (2018). Chemical Composition and Antibacterial Activity of the Essential Oils from Different Parts of Eugenia caryophylata, Thunb Grown in Amboina Island. International Journal of Organic Chemistry, 8(2), 229–239. https://doi.org/10.4236/IJOC.2018.82017 DOI: https://doi.org/10.4236/ijoc.2018.82017
Sucipto, R. K. H., Kuswandi, K., & Wibawa, G. (2022). Ternary liquid-liquid equilibrium for eugenol + tert-butanol + water and eugenol + 1-octanol + water systems at 303.15 K and atmospheric pressure. IOP Conference Series: Earth and Environmental Science, 969(1), 012051. https://doi.org/10.1088/1755-1315/969/1/012051 DOI: https://doi.org/10.1088/1755-1315/969/1/012051
Suhendar, U., & Sogandi, S. (2019). Identifikasi Senyawa AktifEkstrak Daun Cengkeh (Syzygium aromaticum) sebagai Inhibitor Streptococcus mutans. Al-Kauniyah: Jurnal Biologi, 12(2), 229–239. https://doi.org/10.15408/KAUNIYAH.V12I2.12251 DOI: https://doi.org/10.15408/kauniyah.v12i2.12251
Sulaiman, N., Idayu, M.I., Ramlan, A.Z., Fashya, M.N., Farahiyah, A.N.N., Mailina, J., & Azah M.A.N. (2015). Effects of extraction methods on yield and chemical compounds of gaharu (Aquilaria malaccensis). Journal of Tropical Forest Science, 27 (3), 413–419
Utami, L. A., & Putri, D. H. (2020). The Effect of Ethanol Solvent Concentration on Antimicrobial Activities the Extract of Andalas Endophytic Bacteria (Morus macroura Miq.) Fermentation Product. Eksakta :BerkalaIlmiah Bidang MIPA, 21(1), 1–6. https://doi.org/10.24036/EKSAKTA/VOL21-ISS1/210 DOI: https://doi.org/10.24036/eksakta/vol21-iss1/210
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.