Extraction of Flavonoids from Parasitic plant Macrosolen cochinchinensis using Ultrasound-Assisted Extraction: An Optimization Approach
DOI:
https://doi.org/10.18006/2024.12(4).616.624Keywords:
Macrosolen cochinchinensis, Optimization, Extraction, FlavonoidsAbstract
The parasitic plant Macrosolen cochinchinensis (Lour.) VAN Tiegh, commonly found parasitizing mango trees, contains flavonoid compounds with potential anticancer properties. This study aims to optimize the extraction of flavonoids from M. cochinchinensis using the Ultrasonic Assisted Extraction (UAE) method. Three extraction parameters were investigated to determine the best conditions for maximizing extract yield and flavonoid concentration. The parameters considered for the UAE technique were different ethanol concentrations (30%, 70%, and 96%), extraction times (15, 30, and 45 minutes), and solvent-to-sample ratios (1:10, 1:20, and 1:30). The study used Response Surface Methodology (RSM) to identify the optimal extraction conditions. The analysis using RSM indicated that the highest extraction yield (10%) was achieved with a sample-to-solvent ratio of 1:30, 30% ethanol concentration, and an extraction time of 45 minutes. The highest flavonoid content (457.96 mg QE/g extract) was obtained with a solid-to-liquid ratio between 1:20 and 1:30, using 65 to 80% ethanol solvent and an extraction time of 45 minutes. These results suggest that these parameters extract flavonoid compounds from M. cochinchinensis leaves.
References
Abotaleb, M., Samuel, S. M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., & Büsselberg, D. (2018). Flavonoids in Cancer and Apoptosis. Cancers, 11(1), 28. https://doi.org/10.3390/ cancers11010028 DOI: https://doi.org/10.3390/cancers11010028
Azahar, N. F., Gani, S. S. A., & Mohd Mokhtar, N. F. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central journal, 11(1), 96. https://doi.org/10.1186/ s13065-017-0324-y DOI: https://doi.org/10.1186/s13065-017-0324-y
Batra, P., & Sharma, A. K. (2013). Anticancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 3(6), 439–459. https://doi.org/10.1007/s13205-013-0117-5. DOI: https://doi.org/10.1007/s13205-013-0117-5
Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. D. F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in chemistry, 8, 507887. https://doi.org/10.3389/fchem.2020.507887. DOI: https://doi.org/10.3389/fchem.2020.507887
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, 34, 540–560. https://doi.org/10.1016/ j.ultsonch.2016.06.035. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.035
Firmata Sari, A. A. (2020). Isolasi Dan Karakterisasi Komponen Utama Dari Ekstrak Daun Benalu (Macrosolen cochinchinensis (Lour.) Van Tiegh) Dengan Inang Pohon Mangga (Mangifera Indica L.). [Doctoral thesis, Hasanuddin University, Makassar Indonesia].
Indradmojo, C. (2016) Aktivitas Antikanker Dan Mekanisme Farmakologi Ekstrak Dan Fraksi Benalu Nangka (MacrosolenCochinchinensis) Pada Sel Kanker Payudara T47D.
Iwashina, T. (2000). The Structure and Distribution of the Flavonoids in Plants. Journal of Plant Research, 113(3), 287-299. DOI: https://doi.org/10.1007/PL00013940
Jaafar, N. F., Ramli, M. E., & Mohd Salleh, R. (2020). Optimum Extraction Condition of Clitorea ternatea Flower on Antioxidant Activities, Total Phenolic, Total Flavonoid and Total Anthocyanin Contents. Tropical life sciences research, 31(2), 1–17. https://doi.org/10.21315/tlsr2020.31.2.1 DOI: https://doi.org/10.21315/tlsr2020.31.2.1
Kumal, K., Pant, D. R., Aryal, B., Tripathi, G. R., & Joshi, G. P. (2021). Phytochemical and Antioxidant Properties Of Traditionally Used Mistletoes In Nepal. Scientific World, 14(14), 83–89. https://doi.org/10.3126/sw.v14i14.34999. DOI: https://doi.org/10.3126/sw.v14i14.34999
Manavi, S. P., Amiri, T., & Mozafaryan, M.J. (2021). Role of Flavonoids in Diabetes. Journal of Reviews in Medical Sciences, 1(3), 149–61.
Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Angeles Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy, 7(3), 47. https://doi.org/10.3390/ agronomy7030047 DOI: https://doi.org/10.3390/agronomy7030047
Mohan, S., & Nandhakumar, L. (2014). Role of Various Flavonoids: Hypotheses on Novel Approach to Treat Diabetes. Journal of Medical Hypotheses and Ideas, 8(1), 1–6. DOI: https://doi.org/10.1016/j.jmhi.2013.06.001
Mutiah, R., Anik, L., Arief, S., Annisa, R., Hakim, A., Anggraini, W., Susilowati, R. (2018) Activity of inhibit of the cell cycle and induct apoptosis in HeLa cancer cell with combination of Sabrang onion (Eleutherine palmifolia (L.) Merr) and Starfruit Mistletoe Macrosolen cochinchinensis (Lour.) Tiegh extracts. Journal of Applied Pharmaceutical Science 8(10), 122–28. DOI: https://doi.org/10.7324/JAPS.2018.81016
Nawaz, H., Shad, M. A., & Rauf, A. (2018). Optimization of extraction yield and antioxidant properties of Brassica oleracea Convar Capitata Var L. leaf extracts. Food chemistry, 242, 182–187. https://doi.org/10.1016/j.foodchem.2017.09.041 DOI: https://doi.org/10.1016/j.foodchem.2017.09.041
Nigam, Y. P. (2022). The Bornean Mistletoes as Versatile Parasites: A Systematic Review. Systematic Reviews in Pharmacy, 13(1), 42–47.
Pan, G., Yu, G., Zhu, C., & Qiao, J. (2012). Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrasonics sonochemistry, 19(3), 486–490. https://doi.org/10.1016/j.ultsonch.2011.11.006 DOI: https://doi.org/10.1016/j.ultsonch.2011.11.006
Pico, Y. (2013). Ultrasound-Assisted Extraction for Food and Environmental Samples. TrAC Trends in Analytical Chemistry, 43, 84–99. DOI: https://doi.org/10.1016/j.trac.2012.12.005. DOI: https://doi.org/10.1016/j.trac.2012.12.005
Prasad, K. N, Weng Kong, K., Ramakrishnan Nagasundara Ramanan, R.N., Azlan, A., & Ismail, A. (2012). Determination and Optimization of Flavonoid and Extract Yield from Brown Mango Using Response Surface Methodology. Separation Science and Technology, 47(1), 73–80. DOI: https://doi.org/10.1080/01496395.2011.606257
Samanta, A., Das, G., & Das, S.K. (2011). Roles of Flavonoids in Plants. Carbon, 100(6), 12–35.
Santosa, D., Widyastuti, S. M., Rosyidah, U., & Silmia, B. (2022). Detection of Terpenoid and Flavonoid of Five Species of Mistletoes at Stelechocarpus burahol (Bl.) Hook. f. & Th and Lagerstroemia speciosa (L.) Pers. by Using Thin Layer Chromatography Method. In A. Linggawati, A. A. P. Anfa, S, A. Linatoc, C. K. Fusianto, D. Lawrie, et al. (Eds.) 7th International Conference on Biological Science (ICBS 2021) (pp. 388–393). Atlantis Press. DOI: https://doi.org/10.2991/absr.k.220406.055. DOI: https://doi.org/10.2991/absr.k.220406.055
Sharma, V., & Janmeda, P. (2017). Extraction, Isolation and Identification of Flavonoid from Euphorbia Neriifolia Leaves. Arabian Journal of Chemistry, 10(4), 509–14. DOI: https://doi.org/10.1016/j.arabjc.2014.08.019
Shin, H. W., & Lee, N. S. (2018). Understanding plastome evolution in Hemiparasitic Santalales: Complete chloroplast genomes of three species, Dendrotrophe varians, Helixanthera parasitica, and Macrosolen cochinchinensis. PloS one, 13(7), e0200293. https://doi.org/10.1371/journal.pone.0200293 DOI: https://doi.org/10.1371/journal.pone.0200293
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.