Examining the adaptability of soil pH to soil dynamics using different methodologies: A concise review

Authors

DOI:

https://doi.org/10.18006/2024.12(4).573.587

Keywords:

Soil pH management, Agricultural sustainability, Precision agriculture, Organic amendments, Soil microbial activity

Abstract

Soil pH is crucial to soil health, influencing nutrient availability, microbial activity, and plant growth. This review aims to assess the adaptability of soil pH under changing soil conditions by analyzing natural and human factors. Information was gathered from various sources, including peer-reviewed articles, field studies, and recent advances in soil science. The study explores how natural factors such as parent material, climate, and vegetation establish baseline soil pH, while human activities such as intensive farming and land-use changes further modify it, often leading to soil acidification or alkalinization. Traditional management methods like lime application, organic amendments, and crop rotation are reviewed for their effectiveness in stabilizing soil pH and their limitations under varying soil conditions. The review also explores modern technological innovations like precision agriculture, which uses soil sensors and variable rate technology for targeted pH management, and biological approaches, such as microbial inoculants, to enhance nutrient cycling and organic matter decomposition. Integrating these traditional and contemporary approaches is essential for sustainable soil pH management and long-term productivity. The findings highlight the need for a holistic approach that combines historical knowledge with emerging technologies to promote sustainable agricultural practices and environmental conservation.

Author Biographies

Russbelt Yaulilahua-Huacho, Independiente, Angaraes, Huancavelica, Perú

Independiente, Angaraes, Huancavelica, Perú

Liliana Asunción Sumarriva-Bustinza, Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Ligia Isaida Rosaura Gutierrez-Deza, Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Magda Mirella Ordoñez-Santoyo, Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Edwar Tucto-Cueva, Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú

Jorge Luis Huere-Peña, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Carlos Dueñas-Jurado, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Edwin Javier Ccente-Chancha, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Alexei Reynaga-Medina, Universidad Nacional José María Arguedas, Andahuaylas, Perú

Universidad Nacional José María Arguedas, Andahuaylas, Perú

Herbert Rodas-Ccopa, Universidad Nacional José María Arguedas, Andahuaylas, Perú

Universidad Nacional José María Arguedas, Andahuaylas, Perú

Rubén Garcia-Ticllacuri, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

José Carlos Ayuque-Rojas, Universidad Nacional José María Arguedas, Andahuaylas, Perú

Universidad Nacional José María Arguedas, Andahuaylas, Perú

References

Abakumov, E., Yuldashev, G., Mirzayev, U., Isagaliev, M., Sotiboldieva, G., et al. (2023). The Current State of Irrigated Soils in the Central Fergana Desert under the Effect of Anthropogenic Factors. Geosciences, 13(3), 90. DOI: https://doi.org/10.3390/geosciences13030090

Akhtar, N., Ilyas, N., Meraj, T. A., Pour-Aboughadareh, A., Sayyed, R. Z., & Mashwani, Z. U. (2022). Improvement of plant responses by nano-biofertilizer: A step towards sustainable agriculture. Nanomaterials, 12, 965. https://doi.org/10.3390/nano12060965 DOI: https://doi.org/10.3390/nano12060965

Akram, S., Muzaffar, A., Farooq, Q., & Lashari, M. W. (2023). Soil pH and its functions in plant nutrient uptake and restoration. International Journal of Agriculture and Environment, 2(1), 1-5.

Alotaibi, K. D., & Schoenau, J. J. (2019). Addition ofBiochar to a sandy desert soil: effect on crop growth, water retention, and selected properties. Agronomy, 9(6), 327; https://doi.org/10.3390/ agronomy9060327 DOI: https://doi.org/10.3390/agronomy9060327

Anawar, H. M., Akter, F., Solaiman, Z. M., & Strezov, V. (2015). Biochar: An emerging panacea for remediation of soil contaminants from mining, industry, and sewage wastes. Pedosphere, 25(5), 654–665. https://doi.org/10.1016/S1002-0160(15)30046-1 DOI: https://doi.org/10.1016/S1002-0160(15)30046-1

Babadi, F. E., Yunus, R., Soltani, S. M., & Shotipruk, A. (2021). Release mechanisms and kinetic models of Gypsum–Sulfur–Zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega, 6, 11144-11154. https://doi.org/10.1021/ACSOMEGA.0C04353 DOI: https://doi.org/10.1021/acsomega.0c04353

Behera, K. K., Alam, A., Vats, S., Sharma, H. P., & Sharma, V. (2022). Advancing sustainable agriculture: Enhancing crop nutrition with next-generation nanotech-based fertilizers. Nano Research, 16, 13205-13225. https://doi.org/10.1007/s12274-022-4396-3 DOI: https://doi.org/10.1007/s12274-023-6284-8

Benadela, L., Bekkoussa, B., &Gaidi, L. (2022). Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria. Journal of Groundwater Science and Engineering, 10(3), 233-249 doi: 10.19637/j.cnki.2305-7068.2022.03.003

Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021) Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors, 21, 3758. https://doi.org/10.3390/s21113758 DOI: https://doi.org/10.3390/s21113758

Bolan, N., Sarmah, A. K., Bordoloi, S., Bolan, S., Padhye, L. P., et al. (2023). Soil acidification and the liming potential ofBiochar. Environmental Pollution, 317, 120632. DOI: https://doi.org/10.1016/j.envpol.2022.120632

Brady, N. C., & Weil, R. R. (2008). The Nature and Properties of Soils, 14 ed. Prentice Hall. Upper Saddle River, New Jersey.

Cano-Franco, J. C., Hernández-García, H. F., & Álvarez-Láinez, M. L. (2024). Fast-dissolving calcium carbonate particles as a high-performance lime for amelioration of agricultural acidic soils. Journal of Environmental Chemical Engineering, 12(3), 112607. DOI: https://doi.org/10.1016/j.jece.2024.112607

Cao, Y., Ai, Z., Dang, X., Hou, M., Liu, H., et al. (2024). Effects of different reclamation measures on soil quality restoration in open-pit mines: A meta-analysis based on the Chinese Loess Plateau. Ecological Engineering, 203, 107257. DOI: https://doi.org/10.1016/j.ecoleng.2024.107257

Chakraborty, A. (2023). Symbiotic Nitrogen Fixation and Soil Fertility. Integrated Publications TM New Delhi, pp. 127.

Charak, R., Bhardwaj, A., & Gautam, S. (2024). Calcium-based hydroxide: Synthesis and applications. In S. S. Nanda, J. P. Singh, S. Gautam, & D. K. Yi (Eds.), Calcium-Based Materials: Processing, Characterization, and Applications (pp. 71-87). CRC Press. https://doi.org/10.1201/9781032419558 DOI: https://doi.org/10.1201/9781003360599-5

Chatterjee, D., Das, S. R., Saha, S., Sarkar, A., & Pathak, H. (2024). Impacts of climate change on soil processes. In H. Pathak, D. Chatterjee, S. Saha, & B. Das (Eds.), Climate Change Impacts on Soil-Plant-Atmosphere Continuum (pp. 3-36). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9572-1_1 DOI: https://doi.org/10.1007/978-981-99-7935-6_1

Chen, D., Suter, H., Islam, A., Edis, R., Freney, J.R., & Walker, C.N. (2008). Prospects of improving efficiency of fertilizer nitrogen in Australian agriculture: a review of enhanced efficiency fertilizers. Australian Journal of Soil Research, 46(4), 289-301. doi: 10.1071/SR07105. DOI: https://doi.org/10.1071/SR07197

Das, H., Singh, S. K., Priyadarshini, E., Maurya, C. L., Tiwari, A. K., et al. (2024). Nanotechnology Facilitated Real Time Soil Monitoring for Optimized Crop Production. Asian Journal of Soil Science and Plant Nutrition, 10(2), 582-607. DOI: https://doi.org/10.9734/ajsspn/2024/v10i2315

Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and row crop productivity. Communications in soil science and plant analysis, 36(19-20), 2733-2757. DOI: https://doi.org/10.1080/00103620500303939

Franco-Pesantez, F., & Torres, M. E. C. (2023). Organic fertilizers enhance soil water and nutrients holding capacity and their mechanism. International Journal of Agriculture and Environment, 2(1), 21-25.

Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica, 8, 718-752. DOI: https://doi.org/10.1109/JAS.2021.1003925

Galinato, S. P., Yoder, J. K., & Granatstein, D. (2011). The economic value ofBiochar in crop production and carbon sequestration. Energy Policy, 39(10), 6344-6350. DOI: https://doi.org/10.1016/j.enpol.2011.07.035

Galluzzi, G., Plaza, C., Priori, S., Giannetta, B., & Zaccone, C. (2024). Soil organic matter dynamics and stability: Climate vs. time. Science of the Total Environment, 929, 172441. DOI: https://doi.org/10.1016/j.scitotenv.2024.172441

Greenhouse Grower. (2024). Understanding Plant Nutrition: Controlled- And Slow-Release Fertilizers. Retrieved from Greenhouse Grower. https://www.greenhousegrower.com/ production/fertilization/understanding-plant-nutrition-controlled-and-slow-release-fertilizers/

Harter, J., Weigold, P., El-Hadidi, M., Huson, D. H., Kappler, A., & Behrens, S. (2016). Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 562, 379–390. https://doi.org/10.1016/ j.scitotenv.2016.03.220 DOI: https://doi.org/10.1016/j.scitotenv.2016.03.220

Hassan, S.I., Alam, M.M., Illahi, U., Al Ghamdi, M.A., Almotiri, S.H., & Su’ud, M.M. (2021). A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture. IEEE Access, 9, 32517-32548. DOI: https://doi.org/10.1109/ACCESS.2021.3057865

Head, K. V. K. (2024). Soil Health and Nutrient Management. In S. Bhardwaj, A. Kumar, & J. Singh (Eds.), Sustainable Agricultural Technologies (pp. 177-203). Springer Nature. https://doi.org/10.1007/978-3-030-70555-2_8

Hori, M., Kawashima, E., & Yamazaki, T. (2010). Application of Cloud Computing to Agriculture and Prospects in Other Fields. Fujitsu Scientific & Technical Journal, 46(4), 446-454.

Jha, S.K., & Ahmad, Z. (2018) Soil microbial dynamics prediction using machine learning regression methods. Computers and Electronics in Agriculture, 147, 158–165 DOI: https://doi.org/10.1016/j.compag.2018.02.024

Jing, T., Li, J., He, Y., Shankar, A., Saxena, A., et al. (2024). Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions-A comprehensive review. Plant Physiology and Biochemistry, 210, 108602. DOI: https://doi.org/10.1016/j.plaphy.2024.108602. DOI: https://doi.org/10.1016/j.plaphy.2024.108602

Johnston, A. E., & Goulding, K. W. T. (1990). Soil Acidification and its Reversal. Agriculture, Ecosystems & Environment, 30(1-2), 49-74.

Joshi, S. R., Tfaily, M. M., Young, R. P., &Mcnear Jr, D. H. (2024). Root exudates induced coupled carbon and phosphorus cycling in a soil with low phosphorus availability. Plant and Soil, 498(1), 371-390. DOI: https://doi.org/10.1007/s11104-023-06442-4

Kumar, K. A., & Hegde, R. (2023). Crop management practices for carbon sequestration. In S. K. Meena, A. de Oliveira Ferreira, & V. S. Meena (Eds.), Agricultural Soil Sustainability and Carbon Management (pp. 27-48). Academic Press. https://doi.org/10.1016/ B978-0-323-95911-7.00003-5

Lashari, M. W. (2022). Management of plant soil health with nanoparticles: an efficient approach to multiple issues. International Journal of Agriculture and Environment, 1(1), 1-12.

Li, X., & Li, Z. (2024). Global Trends and Current Advances in Slow/Controlled-Release Fertilizers: A Bibliometric Analysis from 1990 to 2023. Agriculture, 14(9), 1502. DOI: https://doi.org/10.3390/agriculture14091502

Liu, Z., Zhao, Y., Zhang, B., Wang, J., Zhu, L., & Hu, B. (2023). Deterministic effect of pH on shaping soil resistome revealed by metagenomic analysis. Environmental science & technology, 57(2), 985-996. DOI: https://doi.org/10.1021/acs.est.2c06684

McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and Organic Matter. Nutrient Management Module No. 8. Montana State University Extension.chrome-extension://efaidnbmnnnibpcaj pcglclefindmkaj/https://www.certifiedcropadviser.org/files/certifications/certified/education/self-study/exam-pdfs/38.pdf

Melese, A., Gebrekidan, H., Yli-Halla, M., &Yitaferu, B. (2015). Phosphorus status, inorganic phosphorus forms, and other physicochemical properties of acid soils of Farta district, Northwestern highlands of Ethiopia. Applied and Environmental Soil Science, 2015(1), 748390. DOI: https://doi.org/10.1155/2015/748390

Miller, J.O. (2021). Soil pH Affects Nutrient Availability. Retrieved from https://extension.umd.edu/sites/extension.umd.edu/ files/publications/FS-1054%20Soil%20pH%20and%20Nutrient% 20Availbility_Update_12_2021.pdf

Mohammed, M., Riad, K., & Alqahtani, N. (2021). Efficient IoT-Based Control for a Smart Subsurface Irrigation System to Enhance Irrigation Management of Date Palm. Sensors (Basel, Switzerland), 21(12), 3942. https://doi.org/10.3390/s21123942 DOI: https://doi.org/10.3390/s21123942

Mohanty, L. K., Singh, N. K., Raj, P., Prakash, A., Tiwari, A. K., Singh, V., & Sachan, P. (2024). Nurturing Crops, Enhancing Soil Health, and Sustaining Agricultural Prosperity Worldwide through Agronomy. Journal of Experimental Agriculture International, 46(2), 46-67. DOI: https://doi.org/10.9734/jeai/2024/v46i22308

Mueller, C. W., Baumert, V., Carminati, A., Germon, A., Holz, M., et al. (2024). From rhizosphere to detritusphere–Soil structure formation driven by plant roots and the interactions with soil biota. Soil Biology and Biochemistry, 193, 109396. DOI: https://doi.org/10.1016/j.soilbio.2024.109396. DOI: https://doi.org/10.1016/j.soilbio.2024.109396

Narayana, T. L., Venkatesh, C., Kiran, A., Kumar, A., Khan, S. B., Almusharraf, A., & Quasim, M. T. (2024). Advances in real-time smart monitoring of environmental parameters using IoT and sensors. Heliyon, 10(7), e15606. https://doi.org/10.1016/ j.heliyon.2024.e15606 DOI: https://doi.org/10.1016/j.heliyon.2024.e28195

Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and environmental soil science, 2019(1), 5794869. DOI: https://doi.org/10.1155/2019/5794869

Neupane, J., & Guo, W. (2019). Agronomic basis and strategies for precision water management: A review. Agronomy, 9(2), 87. https://doi.org/10.3390/agronomy9020087 DOI: https://doi.org/10.3390/agronomy9020087

Oshunsanya, S. (Ed.). (2019). Soil pH for Nutrient Availability and Crop Performance. IntechOpen. doi: 10.5772/68057 DOI: https://doi.org/10.5772/68057

Osman, K. T. (2018). Saline and sodic soils. In K. T. Osman (Eds.) Management of soil problems (pp. 255-298). Springer, Cham. https://doi.org/10.1007/978-3-319-75527-4_10 DOI: https://doi.org/10.1007/978-3-319-75527-4_10

Pallathadka, H., Mustafa, M., Sanchez, D.T., Sajja, G.S., Gour, S., & Naved, M. (2023) Impact of Machine learning on Management, healthcare and Agriculture. Materials Today: Proceedings, 80 (3), 2803-2806 DOI: https://doi.org/10.1016/j.matpr.2021.07.042

Pandit, N. R., Mulder, J., Hale, S. E., Zimmerman, A. R., Pandit, B. H., & Cornelissen, G. (2018). Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. The Science of the total environment, 637-638, 1333–1341. https://doi.org/10.1016/j.scitotenv.2018.05.107 DOI: https://doi.org/10.1016/j.scitotenv.2018.05.107

Pawase, P. P., Nalawade, S. M., Bhanage, G. B., Walunj, A. A., Kadam, P. B., Durgude, A. G., & Patil, M. G. (2023). Variable rate fertilizer application technology for nutrient management: A review. International Journal of Agricultural and Biological Engineering, 16(4), 11-19. DOI: https://doi.org/10.25165/j.ijabe.20231604.7671

Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22(4), 226-239. DOI: https://doi.org/10.1038/s41579-023-00980-5

Potash Development Association (PDA). (2021). Influence of soil pH on plant nutrient availability. Retrieved from https://www.pda.org.uk/wp/wp-content/uploads/2015/12/PDA-lf24.pdf

Rahmat, Z., Sohail, M. N., Perrine-Walker, F., & Kaiser, B. N. (2023). Balancing nitrate acquisition strategies in symbiotic legumes. Planta, 258(1), 12. DOI: https://doi.org/10.1007/s00425-023-04175-3

Rakibuzzaman, M., Li, D., Wu, Z., Xue, Y., Xiao, F., Zhang, L., Song, Y., Zheng, Y., & Cui, Y. (2024). A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7), 1141. https://doi.org/10.3390/ agriculture14071141 DOI: https://doi.org/10.3390/agriculture14071141

Randazzo, G., Muzirafuti, A., & Forcén-Muñoz, L. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Applied Sciences, 12(7), 3396. DOI: https://doi.org/10.3390/app12073396

Schmidt, J. P., & Ellsworth, T. R. (2000). Soil pH and Plant Nutrients. University of Illinois Extension.https:// extension.illinois.edu/soil/interpreting-test-results

Sharma, A., Saini, P., Saini, P., Tyagi, V., Sharma, S., Ahmed, N., & Sheikh, I. (2024). Root system architecture in cereals: Exploring different perspectives of the hidden half. Brazilian Journal of Botany, 47(1), 925-943. https://doi.org/10.1007/s40415-024-00991-3. DOI: https://doi.org/10.1007/s40415-024-00991-3

Si, L., & Li, Z. (2024). Atmospheric precipitation chemistry and environmental significance in major anthropogenic regions globally. Science of The Total Environment, 926, 171830. DOI: https://doi.org/10.1016/j.scitotenv.2024.171830

Singh, N. K., Sachan, K., BP, M., Panotra, N., &Katiyar, D. (2024). Building Soil Health and Fertility through Organic Amendments and Practices: A Review. Asian Journal of Soil Science and Plant Nutrition, 10(1), 175-197. DOI: https://doi.org/10.9734/ajsspn/2024/v10i1224

Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors, 24(8), 2647. DOI: https://doi.org/10.3390/s24082647

Sparks, D. L. (2003). Environmental Soil Chemistry (2nd ed.). Academic Press. DOI: https://doi.org/10.1016/B978-012656446-4/50001-3

Subramani, T., Gopinathan, P., Satheeskumar, V., & Karunanidhi, D. (2024). Role of Geochemistry of Rocks and Soils for Groundwater Quality in the Chithar River Basin, South India—An Approach Using Enrichment Factor (EF) of Trace Elements and Chemical Index of Alteration (CIA). In S. Satheeshkumar, V. Thirukumaran, & D. Karunanidhi (Eds.), Modern River Science for Watershed Management: GIS and Hydrogeological Application (pp. 381-402). Springer Nature Switzerland. https://link.springer.com/book/10.1007/978-3-031-54704-1 DOI: https://doi.org/10.1007/978-3-031-54704-1_21

Thilakarathne, N. N., Bakar, M. S. A., Abas, P. E., & Yassin, H. (2023). Towards making the fields talks: A real-time cloud enabled IoT crop management platform for smart agriculture. Frontiers in plant science, 13, 1030168. https://doi.org/10.3389/fpls.2022.1030168 DOI: https://doi.org/10.3389/fpls.2022.1030168

Toor, M. D., & Naeem, A. (2023). Recent developments in nano-enabled fertilizers for environmental and agricultural sustainability. International Journal of Agriculture and Environment, 2(2), 62-66.

Toor, M. D., & Ramzan, H. (2023). A brief description on the use of organomineral phosphorus in sustainable agriculture. International Journal of Agriculture and Environment, 2(2), 67-71.

Tsegaye, N. T., Negewo, D. A., & Mitiku, S. T. (2023). Effect of Deforestation on the Status of Soil Fertility. East African Journal of Forestry and Agroforestry, 6(1), 137-147. DOI: https://doi.org/10.37284/eajfa.6.1.1183

Victoria, J., Tiwari, K., Rana, S., Tripathi, D. K., Sharma, S., &Sahi, S. (2023). Recent advances and perspectives of nanomaterials in agricultural management and associated environmental risk: A review. Nanomaterials, 13, 1604. https://doi.org/10.3390/nano13101604 DOI: https://doi.org/10.3390/nano13101604

Wang, L., Xiong, W., Chen, H., Meng, F., & Tan, Y. (2024). Exploring the spatial distribution and influencing factors of soil pH value of cultivated land in Sichuan Province. Environmental Earth Sciences, 83(1), 10. DOI: https://doi.org/10.1007/s12665-023-11331-1

Warner, J. M., Mann, M. L., Chamberlin, J., & Tizale, C. Y. (2023). Estimating acid soil effects on selected cereal crop productivities in Ethiopia: Comparing economic cost-effectiveness of lime and fertilizer applications. Plos One, 18(1), e0280230. DOI: https://doi.org/10.1371/journal.pone.0280230

Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. DOI: https://doi.org/10.3390/agronomy14030609

Wen, J., Wu, C., Bi, X., Zhang, S., Ouyang, H., et al. (2023). Soil pH change induced by smelting activities affects secondary carbonate production and long-term Cd activity in subsoils. Applied Geochemistry, 152, 105663. DOI: https://doi.org/10.1016/j.apgeochem.2023.105663

Whiteman, C. A. (2024). Periglacial landforms and landscape development in southern England. Proceedings of the Geologists' Association. https://doi.org/10.1016/j.pgeola.2024.04.006. DOI: https://doi.org/10.1016/j.pgeola.2024.04.006

Yenesew, S. A., Selassie, Y. G., Ejigu, W., Abere, T., Lewoyehu, M., &Adegeh, A. (2024). Effectiveness of micro-dosing of lime on selected chemical properties of soil in Banja District, North West, Ethiopia. Open Agriculture, 9(1), 20220272. DOI: https://doi.org/10.1515/opag-2022-0272

Yuan, Y., Yin, Y., Adamczyk, B., Liang, D., Gu, D., et al. (2024). Nitrogen addition alters the relative importance of roots and mycorrhizal hyphae in regulating soil organic carbon accumulation in a karst forest. Soil Biology and Biochemistry, 195, 109471. DOI: https://doi.org/10.1016/j.soilbio.2024.109471

Downloads

Published

2024-09-25

How to Cite

Yaulilahua-Huacho, R., Sumarriva-Bustinza, L. A., Gutierrez-Deza, L. I. R., Ordoñez-Santoyo, M. M., Tucto-Cueva, E., Huere-Peña, J. L., Dueñas-Jurado, C., Ccente-Chancha, E. J., Reynaga-Medina, A., Rodas-Ccopa, H., Garcia-Ticllacuri, R., & Ayuque-Rojas, J. C. (2024). Examining the adaptability of soil pH to soil dynamics using different methodologies: A concise review. Journal of Experimental Biology and Agricultural Sciences, 12(4), 573–587. https://doi.org/10.18006/2024.12(4).573.587

Issue

Section

REVIEW ARTICLES