Sustainable Seafood Processing: Reducing Waste and Environmental Impact in Aquatic Ecosystems

Authors

DOI:

https://doi.org/10.18006/2024.12(4).522.536

Keywords:

Seafood resources, High-value products, Technological processes, Sustainability, By-products and waste utilization

Abstract

The global seafood industry is crucial in food production, providing essential nutrition and contributing to food security. Beyond its traditional role, the industry holds significant potential for generating high-value products by utilizing seafood resources. This comprehensive review explores the diverse applications of seafood resources, focusing on fish, shellfish, and seaweeds, in producing high-value products. The review examines various technological processes in extracting and purifying bioactive compounds from seafood, highlighting the advancements in seafood processing areas such as nanoencapsulation, fermentation, and enzymatic hydrolysis. Furthermore, it also discusses these innovations' economic and environmental impacts, emphasizing the importance of sustainability and efficiency in utilizing seafood by-products and waste. The seafood industry can minimize environmental pollution and promote circular economy principles by repurposing these materials. The review provides a holistic view of the future directions in this field, advocating for continued research and development efforts to enhance the value and sustainability of seafood resources. Overall, this review underscores the significance of seafood-derived high-value products in addressing global challenges while fostering economic growth and environmental stewardship.

Author Biographies

Franklin Ore Areche, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Armando Antonio Salinas Del Carpio, Universidad Nacional de Juliaca, Juliaca, Perú

Universidad Nacional de Juliaca, Juliaca, Perú

Denis Dante Corilla Flores, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Tania Jakeline Choque Rivera, Universidad Nacional de Juliaca, Juliaca, Perú

Universidad Nacional de Juliaca, Juliaca, Perú

Jovencio Ticsihua Huaman, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Jorge Manuel Montalvo Otivo, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Rafael Julian Malpartida Yapias, Universidad Nacional Autónoma Altoandina de Tarma, Tarma, Perú

Universidad Nacional Autónoma Altoandina de Tarma, Tarma, Perú

José Carlos Ayuque Rojas, Universidad Nacional José María Arguedas

Universidad Nacional José María Arguedas

Herbert Rodas Ccopa, Universidad Nacional José María Arguedas

Universidad Nacional José María Arguedas

Pedro Cordova Mendoza, Universidad Nacional San Luis Gonzaga – Ica

Universidad Nacional San Luis Gonzaga – Ica

Juan Alberto Julcahuanga Dominguez, Universidad Nacional de Piura, Piura, Perú

Universidad Nacional  de Piura, Piura, Perú

References

Abhari, K., & Mousavi Khaneghah, A. (2020). Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. Advances in food and nutrition research, 92, 35–52. https://doi.org/10.1016/bs.afnr.2019.12.004.

Adegoke, S. C., & Tahergorabi, R. (2021). Utilization of seafood-processing by-products for the development of value-added food products. In R. Bhat (Ed.), Valorization of agri-food wastes and by-products (pp. 537-559). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00012-X

Akram, S., Muzaffar, A., & Farooq, Q. (2023). Persistent organic pollutant fragile effects, their sources, transportation and state of the art technologies. International Journal of Agriculture and Environment, 2(2), 26-45.

Ashraf, S. A., Adnan, M., Patel, M., Siddiqui, A. J., Sachidanandan, M., Snoussi, M., & Hadi, S. (2020). Fish-based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the sea. Marine Drugs, 18(5), 265.

Awuchi, C. G., Chukwu, C. N., Iyiola, A. O., Noreen, S., Morya, S., Adeleye, A. O., ... & Okpala, C. O. R. (2022). Bioactive compounds and therapeutics from fish: Revisiting their suitability in functional foods to enhance human wellbeing. BioMed Research International, 2022(1), 3661866.

Azelee, N. I. W., Dahiya, D., Ayothiraman, S., Noor, N. M., Rasid, Z. I. A., et al. (2023). Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds, and their applications: A review. International Journal of Biological Macromolecules, 253(Pt 2), 126492. https://doi.org/10.1016/j.ijbiomac.2023.126492

Bhatt, P., Joshi, S., Bayram, G. M. U., Khati, P., & Simsek, H. (2023). Developments and application of chitosan-based adsorbents for wastewater treatments. Environmental Research, 226, 115530.

Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10-22.

Burbridge, P., Hendrick, V., & Rosenthal, H. (2001). Social and economic policy issues relevant to marine aquaculture. Journal of Applied Ichthyology, 17(4), 194-206.

Cadena, E., Kocak, O., Dewulf, J., Iñarra, B., Bald, C., et al. (2024). Valorization of seafood side-streams through the design of new holistic value chains: WaSeaBi Project. Sustainability, 16(5), 1846.

Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Marine Drugs, 18(12), 622.

Cooney, R., de Sousa, D. B., Fernández-Ríos, A., Mellett, S., Rowan, N., et al. (2023). A circular economy framework for seafood waste valorization to meet challenges and opportunities for intensive production and sustainability. Journal of Cleaner Production, 392, 136283.

Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3, 100047.

D’Orazio, N., Gammone, M. A., Gemello, E., De Girolamo, M., Cusenza, S., & Riccioni, G. (2012). Marine bioactives: Pharmacological properties and potential applications against inflammatory diseases. Marine Drugs, 10(4), 812-833.

Dhandwal, A., Bashir, O., Malik, T., Salve, R. V., Dash, K. K., et al. (2024). Sustainable microalgal biomass as a potential functional food and its applications in food industry: A comprehensive review. Environmental Science and Pollution Research, 1-19. https://doi.org/10.1007/s11356-024-33431-6

Edo, G. I., Samuel, P. O., Nwachukwu, S. C., Ikpekoro, V. O., Promise, O., Oghenegueke, O., Ongulu, J., Otunuya, C. F., Rapheal, O. A., Ajokpaoghene, M. O., Okolie, M. C., & Ajakaye, R. S. (2024). A review on the biological and bioactive components of Cyperus esculentus L.: insight on food, health and nutrition. Journal of the science of food and agriculture, 10.1002/jsfa.13570. Advance online publication. https://doi.org/10.1002/jsfa.13570

Farmery, A. K., Alexander, K., Anderson, K., Blanchard, J. L., Carter, C. G., et al. (2022). Food for all: Designing sustainable and secure future seafood systems. Reviews in Fish Biology and Fisheries, 32(1), 101-121.

Fernandes, S. S., Coelho, M. S., & de las Mercedes Salas-Mellado, M. (2019). Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources. In M. R. S. Campos (Ed.), Bioactive compounds (pp. 129-142). Woodhead Publishing.

Gisbert, M., Franco, D., Sineiro, J., & Moreira, R. (2023). Antioxidant and antidiabetic properties of phlorotannins from Ascophyllum nodosum seaweed extracts. Molecules, 28(13), 4937.

Ha, H. A., Aloufi, A. S., & Parveen, B. (2024). Essential bioactive competence of laminarin (β-glucan)/laminaran extracted from Padina tetrastromatica and Sargassum cinereum biomass. Environmental Research, 252, 118836.

Haider, A., Khan, S., Iqbal, D. N., Shrahili, M., Haider, S., et al. (2024). Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. European Polymer Journal, 210, 112983. https://doi.org/10.1016/ j.eurpolymj.2024.112983.

Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40-50.

Islam, N., Hoque, M., & Taharat, S. F. (2023). Recent advances in extraction of chitin and chitosan. World Journal of Microbiology and Biotechnology, 39(1), 28.

Jiménez-González, C., Agrasar, A. M. T., Mallo, F., Rúa, M. L., & Fucinos, C. (2023). Red seaweed proteins: Valuable marine-origin compounds with encouraging applications. Algal Research, 75, 103262. https://doi.org/10.1016/j.algal.2023.103262

Kalasariya, H. S., Maya-Ramírez, C. E., Cotas, J., & Pereira, L. (2024). Cosmeceutical significance of seaweed: A focus on carbohydrates and peptides in skin applications. Phycology, 4(2), 276-313.

Kankariya, Y., & Chatterjee, B. (2023). Biomedical application of chitosan and chitosan derivatives: A comprehensive review. Current Pharmaceutical Design, 29(17), 1311-1325.

Khursheed, M., Ghelani, H., Jan, R. K., & Adrian, T. E. (2023). Anti-inflammatory effects of bioactive compounds from seaweeds, bryozoans, jellyfish, shellfish, and peanut worms. Marine Drugs, 21(10), 524.

Kumar, P., Yadav, N., Kumar, S., Bahadur, J., & Chauhan, P. K. (2022). Seaweed-based biofuels: Current status and prospects. Bioresource Technology, 348, 126618. https://doi.org/10.1016/ j.biortech.2022.126618

Lomartire, S., & Gonçalves, A. M. (2023). Algal phycocolloids: Bioactivities and pharmaceutical applications. Marine Drugs, 21(7), 384.

López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., et al. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals, and nutricosmetics. Marine Drugs, 19(10), 552.

Luo, J., Frank, D., & Arcot, J. (2024). Creating alternative seafood flavour from non-animal ingredients: A review of key flavour molecules relevant to seafood. Food Chemistry, X, 101400.

Magbanua, T. O., & Ragaza, J. A. (2024). Selected dietary plant-based proteins for growth and health response of Nile tilapia Oreochromis niloticus. Aquaculture and Fisheries, 9(1), 3-19.

Maneein, S., Milledge, J. J., Nielsen, B. V., & Harvey, P. J. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4(4), 100.

Martins, T. R., de Andrade, M. R., de Alcantara, M., Martins, I. B. A., Sant'Anna, L. J., et al. (2024). Exploring the consumer perception of seafood: A look at Brazilians. International Journal of Gastronomy and Food Science, 36, 100938.

Menon, V. V., & Lele, S. S. (2015). Nutraceuticals and bioactive compounds from seafood processing waste. In S. K. Kim (Eds.), Springer handbook of marine biotechnology (pp. 1405-1425). Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_65

Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies, 7(11), 7194-7222.

Mohiuddin, A. (2019). Skin aging and modern age anti-aging strategies. International Journal of Clinical Dermatology & Research, 7, 209-240.

Mutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., & Zupo, V. (2021). Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods, 10(7), 1495.

Naghdi, S., Rezaei, M., Heidari, M. G., Tahergorabi, R., Lorenzo, J. M., & Mirzaei, F. (2024). Insights into fishery by-product application in aquatic feed and food: A review. Aquaculture International,32, 5851-5910. https://doi.org/10.1007/s10499-024-01447-x

Nakhate, P., & Van Der Meer, Y. (2021). A systematic review on seaweed functionality: A sustainable bio-based material. Sustainability, 13(11), 6174.

Ozogul, F., Cagalj, M., Šimat, V., Ozogul, Y., Tkaczewska, J., et al. (2021). Recent developments in valorization of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science & Technology, 116, 559-582.

Pacheco-Aguilar, R., Gaxiola-Cortés, M. G., Velázquez-Gutiérrez, M. C., Hernández-Ledesma, B., & Montes-Montes, R. (2021). Seaweed bioactive compounds in animal and human health and food applications: Potential uses of seaweeds in sustainable food production systems. Journal of Applied Phycology, 33(3), 1819–1832. https://doi.org/10.1007/s10811-020-02268-9

Pateiro, M., Gómez, B., Munekata, P. E., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality, and the appearance of the final food products. Molecules, 26(6), 1547.

Pereira, L. (2018). Seaweeds as a source of bioactive substances and skin care therapy: Cosmeceuticals, algotherapy, and thalassotherapy. Cosmetics, 5(4), 68.

Perez-Vazquez, A., Carpena, M., Barciela, P., Cassani, L., Simal-Gandara, J., & Prieto, M. A. (2023). Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants, 12(3), 612.

Power, A. M., Johnson, M. P., Marine, D. P., & Kelly, T. C. (2013). Seaweed as a resource for biofuels: An overview of technologies and challenges. Marine Biotechnology, 15(4), 431-445. https://doi.org/10.1007/s10126-013-9502-7

Rengasamy, K. R., Mahomoodally, M. F., Aumeeruddy, M. Z., Zengin, G., Xiao, J., & Kim, D. H. (2020). Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 135, 111013.

Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers, 15(13), 2867.

Santos, H. O., Price, J. C., & Bueno, A. A. (2020). Beyond fish oil supplementation: The effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers: An overview. Nutrients, 12(10), 3159.

Shavandi, A., Hu, Z., Teh, S., Zhao, J., Carne, A., Bekhit, A. E.-D. A., & Bekhit, A. A. (2019). Seaweed polysaccharides as prebiotics, wound dressings, and drug delivery systems: A review. Journal of Functional Foods, 64, 103587. https://doi.org/10.1016/ j.jff.2019.103587

Siahaan, E. A., Agusman, Pangestuti, R., Shin, K. H., & Kim, S. K. (2022). Potential cosmetic active ingredients derived from marine by-products. Marine Drugs, 20(12), 734.

Singh, S., Negi, T., Sagar, N. A., Kumar, Y., Tarafdar, A., et al. (2022). Sustainable processes for treatment and management of seafood solid waste. Science of the Total Environment, 817, 152951.

Stetkiewicz, S., Norman, R. A., Allison, E. H., Andrew, N. L., Ara, G., et al. (2022). Seafood in food security: A call for bridging the terrestrial-aquatic divide. Frontiers in Sustainable Food Systems, 5, 703152.

Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13), 2469.

Tacon, A. G., Coelho, R. T., Levy, J., Machado, T. M., Neiva, C. R., & Lemos, D. (2024). Annotated bibliography of selected papers dealing with the health benefits and risks of fish and seafood consumption. Reviews in Fisheries Science & Aquaculture, 32(2), 211-305.

Tas, A. A., & El, S. N. (2024). The food system with optimum nutrition vision. In A. A. Tas, & S. Nehir El (Eds.), Smart Food Industry: The Blockchain for Sustainable Engineering (pp. 3-24). CRC Press.

Välimaa, A. L., Mäkinen, S., Mattila, P., Marnila, P., Pihlanto, A., Mäki, M., & Hiidenhovi, J. (2019). Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 3(4), 209-226.

Venugopal, V. (2022). Green processing of seafood waste biomass towards blue economy. Current Research in Environmental Sustainability, 4, 100164.

Veríssimo, N. V., Mussagy, C. U., Oshiro, A. A., Mendonça, C. M. N., de Carvalho Santos-Ebinuma, V., et al. (2021). From green to

blue economy: Marine biorefineries for a sustainable ocean-based economy. Green Chemistry, 23(23), 9377-9400.

Wang, Q., Wang, X., & Feng, Y. (2023). Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels, 9(5), 373.

Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. (2021). Supercritical carbon dioxide applications in food processing. Food Engineering Reviews, 13, 570-591. https://doi.org/10.1007/s12393-020-09270-9

Xing, X., Han, Y., & Cheng, H. (2023). Biomedical applications of chitosan/silk fibroin composites: A review. International Journal of Biological Macromolecules, 240, 124407. https://doi.org/10.1016/j.ijbiomac.2023.124407

Yang, L., Shu, T., Wang, K., Yuan, Z., & Zhang, X. (2023). Roles of marine shellfish proteins with high contents of angiotensin-converting enzyme (ACE)-binding peptides in nutrition support for hypertension. Applied Sciences, 13(8), 4654.

Zhang, J., Ahmmed, M. K., Regenstein, J. M., & Wu, H. (2024). Recent advances of recycling proteins from seafood by-products: Industrial applications, challenges, and breakthroughs. Trends in Food Science & Technology, 149, 104533. https://doi.org/10.1016/j.tifs.2024.104533

Downloads

Published

2024-09-25

How to Cite

Areche, F. O., Salinas Del Carpio, A. A., Flores, D. D. C., Rivera, T. J. C., Huaman, J. T., Otivo, J. M. M., Yapias, R. J. M., Rojas, J. C. A., Ccopa, H. R., Mendoza, P. C., & Dominguez, J. A. J. (2024). Sustainable Seafood Processing: Reducing Waste and Environmental Impact in Aquatic Ecosystems. Journal of Experimental Biology and Agricultural Sciences, 12(4), 522–536. https://doi.org/10.18006/2024.12(4).522.536

Issue

Section

REVIEW ARTICLES