Sustainable Seafood Processing: Reducing Waste and Environmental Impact in Aquatic Ecosystems

Authors

DOI:

https://doi.org/10.18006/2024.12(4).522.536

Keywords:

Seafood resources, High-value products, Technological processes, Sustainability, By-products and waste utilization

Abstract

The global seafood industry is crucial in food production, providing essential nutrition and contributing to food security. Beyond its traditional role, the industry holds significant potential for generating high-value products by utilizing seafood resources. This comprehensive review explores the diverse applications of seafood resources, focusing on fish, shellfish, and seaweeds, in producing high-value products. The review examines various technological processes in extracting and purifying bioactive compounds from seafood, highlighting the advancements in seafood processing areas such as nanoencapsulation, fermentation, and enzymatic hydrolysis. Furthermore, it also discusses these innovations' economic and environmental impacts, emphasizing the importance of sustainability and efficiency in utilizing seafood by-products and waste. The seafood industry can minimize environmental pollution and promote circular economy principles by repurposing these materials. The review provides a holistic view of the future directions in this field, advocating for continued research and development efforts to enhance the value and sustainability of seafood resources. Overall, this review underscores the significance of seafood-derived high-value products in addressing global challenges while fostering economic growth and environmental stewardship.

Author Biographies

Franklin Ore Areche, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Armando Antonio Salinas Del Carpio, Universidad Nacional de Juliaca, Juliaca, Perú

Universidad Nacional de Juliaca, Juliaca, Perú

Denis Dante Corilla Flores, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Tania Jakeline Choque Rivera, Universidad Nacional de Juliaca, Juliaca, Perú

Universidad Nacional de Juliaca, Juliaca, Perú

Jovencio Ticsihua Huaman, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Jorge Manuel Montalvo Otivo, Universidad Nacional de Huancavelica, Huancavelica, Perú

Universidad Nacional de Huancavelica, Huancavelica, Perú

Rafael Julian Malpartida Yapias, Universidad Nacional Autónoma Altoandina de Tarma, Tarma, Perú

Universidad Nacional Autónoma Altoandina de Tarma, Tarma, Perú

José Carlos Ayuque Rojas, Universidad Nacional José María Arguedas

Universidad Nacional José María Arguedas

Herbert Rodas Ccopa, Universidad Nacional José María Arguedas

Universidad Nacional José María Arguedas

Pedro Cordova Mendoza, Universidad Nacional San Luis Gonzaga – Ica

Universidad Nacional San Luis Gonzaga – Ica

Juan Alberto Julcahuanga Dominguez, Universidad Nacional de Piura, Piura, Perú

Universidad Nacional  de Piura, Piura, Perú

References

Abhari, K., & Mousavi Khaneghah, A. (2020). Alternative extraction techniques to obtain, isolate and purify proteins and bioactive from aquaculture and by-products. Advances in food and nutrition research, 92, 35–52. https://doi.org/10.1016/bs.afnr.2019.12.004. DOI: https://doi.org/10.1016/bs.afnr.2019.12.004

Adegoke, S. C., & Tahergorabi, R. (2021). Utilization of seafood-processing by-products for the development of value-added food products. In R. Bhat (Ed.), Valorization of agri-food wastes and by-products (pp. 537-559). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00012-X DOI: https://doi.org/10.1016/B978-0-12-824044-1.00012-X

Akram, S., Muzaffar, A., & Farooq, Q. (2023). Persistent organic pollutant fragile effects, their sources, transportation and state of the art technologies. International Journal of Agriculture and Environment, 2(2), 26-45.

Ashraf, S. A., Adnan, M., Patel, M., Siddiqui, A. J., Sachidanandan, M., Snoussi, M., & Hadi, S. (2020). Fish-based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the sea. Marine Drugs, 18(5), 265. DOI: https://doi.org/10.3390/md18050265

Awuchi, C. G., Chukwu, C. N., Iyiola, A. O., Noreen, S., Morya, S., Adeleye, A. O., ... & Okpala, C. O. R. (2022). Bioactive compounds and therapeutics from fish: Revisiting their suitability in functional foods to enhance human wellbeing. BioMed Research International, 2022(1), 3661866. DOI: https://doi.org/10.1155/2022/3661866

Azelee, N. I. W., Dahiya, D., Ayothiraman, S., Noor, N. M., Rasid, Z. I. A., et al. (2023). Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds, and their applications: A review. International Journal of Biological Macromolecules, 253(Pt 2), 126492. https://doi.org/10.1016/j.ijbiomac.2023.126492 DOI: https://doi.org/10.1016/j.ijbiomac.2023.126492

Bhatt, P., Joshi, S., Bayram, G. M. U., Khati, P., & Simsek, H. (2023). Developments and application of chitosan-based adsorbents for wastewater treatments. Environmental Research, 226, 115530. DOI: https://doi.org/10.1016/j.envres.2023.115530

Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10-22. DOI: https://doi.org/10.1016/j.tifs.2018.12.004

Burbridge, P., Hendrick, V., & Rosenthal, H. (2001). Social and economic policy issues relevant to marine aquaculture. Journal of Applied Ichthyology, 17(4), 194-206. DOI: https://doi.org/10.1046/j.1439-0426.2001.00316.x

Cadena, E., Kocak, O., Dewulf, J., Iñarra, B., Bald, C., et al. (2024). Valorization of seafood side-streams through the design of new holistic value chains: WaSeaBi Project. Sustainability, 16(5), 1846. DOI: https://doi.org/10.3390/su16051846

Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. (2020). Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Marine Drugs, 18(12), 622. DOI: https://doi.org/10.3390/md18120622

Cooney, R., de Sousa, D. B., Fernández-Ríos, A., Mellett, S., Rowan, N., et al. (2023). A circular economy framework for seafood waste valorization to meet challenges and opportunities for intensive production and sustainability. Journal of Cleaner Production, 392, 136283. DOI: https://doi.org/10.1016/j.jclepro.2023.136283

Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3, 100047. DOI: https://doi.org/10.1016/j.fochms.2021.100047

D’Orazio, N., Gammone, M. A., Gemello, E., De Girolamo, M., Cusenza, S., & Riccioni, G. (2012). Marine bioactives: Pharmacological properties and potential applications against inflammatory diseases. Marine Drugs, 10(4), 812-833. DOI: https://doi.org/10.3390/md10040812

Dhandwal, A., Bashir, O., Malik, T., Salve, R. V., Dash, K. K., et al. (2024). Sustainable microalgal biomass as a potential functional food and its applications in food industry: A comprehensive review. Environmental Science and Pollution Research, 1-19. https://doi.org/10.1007/s11356-024-33431-6 DOI: https://doi.org/10.1007/s11356-024-33431-6

Edo, G. I., Samuel, P. O., Nwachukwu, S. C., Ikpekoro, V. O., Promise, O., Oghenegueke, O., Ongulu, J., Otunuya, C. F., Rapheal, O. A., Ajokpaoghene, M. O., Okolie, M. C., & Ajakaye, R. S. (2024). A review on the biological and bioactive components of Cyperus esculentus L.: insight on food, health and nutrition. Journal of the science of food and agriculture, 10.1002/jsfa.13570. Advance online publication. https://doi.org/10.1002/jsfa.13570 DOI: https://doi.org/10.1002/jsfa.13570

Farmery, A. K., Alexander, K., Anderson, K., Blanchard, J. L., Carter, C. G., et al. (2022). Food for all: Designing sustainable and secure future seafood systems. Reviews in Fish Biology and Fisheries, 32(1), 101-121. DOI: https://doi.org/10.1007/s11160-021-09663-x

Fernandes, S. S., Coelho, M. S., & de las Mercedes Salas-Mellado, M. (2019). Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources. In M. R. S. Campos (Ed.), Bioactive compounds (pp. 129-142). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-814774-0.00007-4

Gisbert, M., Franco, D., Sineiro, J., & Moreira, R. (2023). Antioxidant and antidiabetic properties of phlorotannins from Ascophyllum nodosum seaweed extracts. Molecules, 28(13), 4937. DOI: https://doi.org/10.3390/molecules28134937

Ha, H. A., Aloufi, A. S., & Parveen, B. (2024). Essential bioactive competence of laminarin (β-glucan)/laminaran extracted from Padina tetrastromatica and Sargassum cinereum biomass. Environmental Research, 252, 118836. DOI: https://doi.org/10.1016/j.envres.2024.118836

Haider, A., Khan, S., Iqbal, D. N., Shrahili, M., Haider, S., et al. (2024). Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. European Polymer Journal, 210, 112983. https://doi.org/10.1016/ j.eurpolymj.2024.112983. DOI: https://doi.org/10.1016/j.eurpolymj.2024.112983

Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40-50. DOI: https://doi.org/10.1016/j.tifs.2015.11.007

Islam, N., Hoque, M., & Taharat, S. F. (2023). Recent advances in extraction of chitin and chitosan. World Journal of Microbiology and Biotechnology, 39(1), 28. DOI: https://doi.org/10.1007/s11274-022-03468-1

Jiménez-González, C., Agrasar, A. M. T., Mallo, F., Rúa, M. L., & Fucinos, C. (2023). Red seaweed proteins: Valuable marine-origin compounds with encouraging applications. Algal Research, 75, 103262. https://doi.org/10.1016/j.algal.2023.103262 DOI: https://doi.org/10.1016/j.algal.2023.103262

Kalasariya, H. S., Maya-Ramírez, C. E., Cotas, J., & Pereira, L. (2024). Cosmeceutical significance of seaweed: A focus on carbohydrates and peptides in skin applications. Phycology, 4(2), 276-313. DOI: https://doi.org/10.3390/phycology4020015

Kankariya, Y., & Chatterjee, B. (2023). Biomedical application of chitosan and chitosan derivatives: A comprehensive review. Current Pharmaceutical Design, 29(17), 1311-1325. DOI: https://doi.org/10.2174/1381612829666230524153002

Khursheed, M., Ghelani, H., Jan, R. K., & Adrian, T. E. (2023). Anti-inflammatory effects of bioactive compounds from seaweeds, bryozoans, jellyfish, shellfish, and peanut worms. Marine Drugs, 21(10), 524. DOI: https://doi.org/10.3390/md21100524

Kumar, P., Yadav, N., Kumar, S., Bahadur, J., & Chauhan, P. K. (2022). Seaweed-based biofuels: Current status and prospects. Bioresource Technology, 348, 126618. https://doi.org/10.1016/ j.biortech.2022.126618

Lomartire, S., & Gonçalves, A. M. (2023). Algal phycocolloids: Bioactivities and pharmaceutical applications. Marine Drugs, 21(7), 384. DOI: https://doi.org/10.3390/md21070384

López-Hortas, L., Flórez-Fernández, N., Torres, M. D., Ferreira-Anta, T., Casas, M. P., et al. (2021). Applying seaweed compounds in cosmetics, cosmeceuticals, and nutricosmetics. Marine Drugs, 19(10), 552. DOI: https://doi.org/10.3390/md19100552

Luo, J., Frank, D., & Arcot, J. (2024). Creating alternative seafood flavour from non-animal ingredients: A review of key flavour molecules relevant to seafood. Food Chemistry, X, 101400. DOI: https://doi.org/10.1016/j.fochx.2024.101400

Magbanua, T. O., & Ragaza, J. A. (2024). Selected dietary plant-based proteins for growth and health response of Nile tilapia Oreochromis niloticus. Aquaculture and Fisheries, 9(1), 3-19. DOI: https://doi.org/10.1016/j.aaf.2022.04.001

Maneein, S., Milledge, J. J., Nielsen, B. V., & Harvey, P. J. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4(4), 100. DOI: https://doi.org/10.3390/fermentation4040100

Martins, T. R., de Andrade, M. R., de Alcantara, M., Martins, I. B. A., Sant'Anna, L. J., et al. (2024). Exploring the consumer perception of seafood: A look at Brazilians. International Journal of Gastronomy and Food Science, 36, 100938. DOI: https://doi.org/10.1016/j.ijgfs.2024.100938

Menon, V. V., & Lele, S. S. (2015). Nutraceuticals and bioactive compounds from seafood processing waste. In S. K. Kim (Eds.), Springer handbook of marine biotechnology (pp. 1405-1425). Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_65 DOI: https://doi.org/10.1007/978-3-642-53971-8_65

Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies, 7(11), 7194-7222. DOI: https://doi.org/10.3390/en7117194

Mohiuddin, A. (2019). Skin aging and modern age anti-aging strategies. International Journal of Clinical Dermatology & Research, 7, 209-240. DOI: https://doi.org/10.19070/2332-2977-1900052

Mutalipassi, M., Esposito, R., Ruocco, N., Viel, T., Costantini, M., & Zupo, V. (2021). Bioactive compounds of nutraceutical value from fishery and aquaculture discards. Foods, 10(7), 1495. DOI: https://doi.org/10.3390/foods10071495

Naghdi, S., Rezaei, M., Heidari, M. G., Tahergorabi, R., Lorenzo, J. M., & Mirzaei, F. (2024). Insights into fishery by-product application in aquatic feed and food: A review. Aquaculture International,32, 5851-5910. https://doi.org/10.1007/s10499-024-01447-x DOI: https://doi.org/10.1007/s10499-024-01447-x

Nakhate, P., & Van Der Meer, Y. (2021). A systematic review on seaweed functionality: A sustainable bio-based material. Sustainability, 13(11), 6174. DOI: https://doi.org/10.3390/su13116174

Ozogul, F., Cagalj, M., Šimat, V., Ozogul, Y., Tkaczewska, J., et al. (2021). Recent developments in valorization of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science & Technology, 116, 559-582. DOI: https://doi.org/10.1016/j.tifs.2021.08.007

Pacheco-Aguilar, R., Gaxiola-Cortés, M. G., Velázquez-Gutiérrez, M. C., Hernández-Ledesma, B., & Montes-Montes, R. (2021). Seaweed bioactive compounds in animal and human health and food applications: Potential uses of seaweeds in sustainable food production systems. Journal of Applied Phycology, 33(3), 1819–1832. https://doi.org/10.1007/s10811-020-02268-9

Pateiro, M., Gómez, B., Munekata, P. E., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality, and the appearance of the final food products. Molecules, 26(6), 1547. DOI: https://doi.org/10.3390/molecules26061547

Pereira, L. (2018). Seaweeds as a source of bioactive substances and skin care therapy: Cosmeceuticals, algotherapy, and thalassotherapy. Cosmetics, 5(4), 68. DOI: https://doi.org/10.3390/cosmetics5040068

Perez-Vazquez, A., Carpena, M., Barciela, P., Cassani, L., Simal-Gandara, J., & Prieto, M. A. (2023). Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants, 12(3), 612. DOI: https://doi.org/10.3390/antiox12030612

Power, A. M., Johnson, M. P., Marine, D. P., & Kelly, T. C. (2013). Seaweed as a resource for biofuels: An overview of technologies and challenges. Marine Biotechnology, 15(4), 431-445. https://doi.org/10.1007/s10126-013-9502-7 DOI: https://doi.org/10.1007/s10126-013-9502-7

Rengasamy, K. R., Mahomoodally, M. F., Aumeeruddy, M. Z., Zengin, G., Xiao, J., & Kim, D. H. (2020). Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food and Chemical Toxicology, 135, 111013. DOI: https://doi.org/10.1016/j.fct.2019.111013

Román-Doval, R., Torres-Arellanes, S. P., Tenorio-Barajas, A. Y., Gómez-Sánchez, A., & Valencia-Lazcano, A. A. (2023). Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers, 15(13), 2867. DOI: https://doi.org/10.3390/polym15132867

Santos, H. O., Price, J. C., & Bueno, A. A. (2020). Beyond fish oil supplementation: The effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers: An overview. Nutrients, 12(10), 3159. DOI: https://doi.org/10.3390/nu12103159

Shavandi, A., Hu, Z., Teh, S., Zhao, J., Carne, A., Bekhit, A. E.-D. A., & Bekhit, A. A. (2019). Seaweed polysaccharides as prebiotics, wound dressings, and drug delivery systems: A review. Journal of Functional Foods, 64, 103587. https://doi.org/10.1016/ j.jff.2019.103587

Siahaan, E. A., Agusman, Pangestuti, R., Shin, K. H., & Kim, S. K. (2022). Potential cosmetic active ingredients derived from marine by-products. Marine Drugs, 20(12), 734. DOI: https://doi.org/10.3390/md20120734

Singh, S., Negi, T., Sagar, N. A., Kumar, Y., Tarafdar, A., et al. (2022). Sustainable processes for treatment and management of seafood solid waste. Science of the Total Environment, 817, 152951. DOI: https://doi.org/10.1016/j.scitotenv.2022.152951

Stetkiewicz, S., Norman, R. A., Allison, E. H., Andrew, N. L., Ara, G., et al. (2022). Seafood in food security: A call for bridging the terrestrial-aquatic divide. Frontiers in Sustainable Food Systems, 5, 703152. DOI: https://doi.org/10.3389/fsufs.2021.703152

Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13), 2469. DOI: https://doi.org/10.3390/plants12132469

Tacon, A. G., Coelho, R. T., Levy, J., Machado, T. M., Neiva, C. R., & Lemos, D. (2024). Annotated bibliography of selected papers dealing with the health benefits and risks of fish and seafood consumption. Reviews in Fisheries Science & Aquaculture, 32(2), 211-305. DOI: https://doi.org/10.1080/23308249.2023.2238821

Tas, A. A., & El, S. N. (2024). The food system with optimum nutrition vision. In A. A. Tas, & S. Nehir El (Eds.), Smart Food Industry: The Blockchain for Sustainable Engineering (pp. 3-24). CRC Press. DOI: https://doi.org/10.1201/9781003231172-2

Välimaa, A. L., Mäkinen, S., Mattila, P., Marnila, P., Pihlanto, A., Mäki, M., & Hiidenhovi, J. (2019). Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 3(4), 209-226. DOI: https://doi.org/10.1093/fqsafe/fyz024

Venugopal, V. (2022). Green processing of seafood waste biomass towards blue economy. Current Research in Environmental Sustainability, 4, 100164. DOI: https://doi.org/10.1016/j.crsust.2022.100164

Veríssimo, N. V., Mussagy, C. U., Oshiro, A. A., Mendonça, C. M. N., de Carvalho Santos-Ebinuma, V., et al. (2021). From green to

blue economy: Marine biorefineries for a sustainable ocean-based economy. Green Chemistry, 23(23), 9377-9400. DOI: https://doi.org/10.1039/D1GC03191K

Wang, Q., Wang, X., & Feng, Y. (2023). Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels, 9(5), 373. DOI: https://doi.org/10.3390/gels9050373

Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. (2021). Supercritical carbon dioxide applications in food processing. Food Engineering Reviews, 13, 570-591. https://doi.org/10.1007/s12393-020-09270-9 DOI: https://doi.org/10.1007/s12393-020-09270-9

Xing, X., Han, Y., & Cheng, H. (2023). Biomedical applications of chitosan/silk fibroin composites: A review. International Journal of Biological Macromolecules, 240, 124407. https://doi.org/10.1016/j.ijbiomac.2023.124407 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124407

Yang, L., Shu, T., Wang, K., Yuan, Z., & Zhang, X. (2023). Roles of marine shellfish proteins with high contents of angiotensin-converting enzyme (ACE)-binding peptides in nutrition support for hypertension. Applied Sciences, 13(8), 4654. DOI: https://doi.org/10.3390/app13084654

Zhang, J., Ahmmed, M. K., Regenstein, J. M., & Wu, H. (2024). Recent advances of recycling proteins from seafood by-products: Industrial applications, challenges, and breakthroughs. Trends in Food Science & Technology, 149, 104533. https://doi.org/10.1016/j.tifs.2024.104533 DOI: https://doi.org/10.1016/j.tifs.2024.104533

Downloads

Published

2024-09-25

How to Cite

Areche, F. O., Salinas Del Carpio, A. A., Flores, D. D. C., Rivera, T. J. C., Huaman, J. T., Otivo, J. M. M., Yapias, R. J. M., Rojas, J. C. A., Ccopa, H. R., Mendoza, P. C., & Dominguez, J. A. J. (2024). Sustainable Seafood Processing: Reducing Waste and Environmental Impact in Aquatic Ecosystems. Journal of Experimental Biology and Agricultural Sciences, 12(4), 522–536. https://doi.org/10.18006/2024.12(4).522.536

Issue

Section

REVIEW ARTICLES