Unveiling the positive impacts of the genus Rhodococcus on plant and environmental health
DOI:
https://doi.org/10.18006/2024.12(4).557.572Keywords:
Agriculture, Bioremediation, Pesticides, Rhodococcus, SiderophoreAbstract
Organic farming has emerged as a sustainable solution to the adverse effects (diminished nutritional value, compromised food quality, environmental contamination, and public health hazards) that are usually associated with harmful chemical pesticides. To overcome such loss, one must explore the plant-associated microbes that are the naturally occurring root commensal and could positively improve crop health. In this review, we highlight the importance of the bacterial genus Rhodococcus, a subset of Actinobacteria that carries immense potential in enhancing crop yield and is associated with bioremediation of toxic pesticides and other chemicals to improve soil health. However, it has been noticed that few species of Rhodococcus are pathogenic for the plant (R. fascians) as well as humans/animals (R. equi). But still, the majority of Rhodococcus isolates are found to be non-pathogenic and carry substantial beneficial traits. Here, we have attempted to comprise those beneficial traits of the different members of the genus Rhodococcus. The main emphasis of this review article is to explore the major areas such as enzyme production, phytohormone synthesis, growth regulation, siderophore production, bioremediation, organic compound degradation, and environmental pollution control. Opinions towards the applications of advanced methodologies for utilizing the cumulative prospective potential of the genus Rhodococcus have also been discussed in the different sections of the review. Conclusively, this article gathers the scattered information from the past and recent literature about this bacteria and provides the future direction about how it can improve plant/soil health and eliminate toxic chemicals and environmental pollutants.
References
Ahirwar, N. K. (2023). Advanced Pesticide Nano Formulations and Understanding Their Breakdown by Bacteria. Indian Journal of Microbiology Research, 10(4), 193–201. doi: 10.18231/j.ijmr.2023.035. DOI: https://doi.org/10.18231/j.ijmr.2023.035
Alam, S. A., & Saha, P. (2022). Microbial Biodegradation of Nitrophenols and Their Derivatives: A Review. Journal of Experimental Biology and Agricultural Sciences, 10(4):743–66. doi: 10.18006/2022.10(4).743.766. DOI: https://doi.org/10.18006/2022.10(4).743.766
Aslam, S., Jing, Y., & Nowak, K. M. (2023). Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. Journal of hazardous materials, 447, 130847. https://doi.org/10.1016/j.jhazmat.2023.130847. DOI: https://doi.org/10.1016/j.jhazmat.2023.130847
Bacha, A. U., Nabi, I., Zaheer, M., Jin, W., & Yang, L. (2023). Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. The Science of the total environment, 858(Pt 3), 160108. https://doi.org/10.1016/j.scitotenv.2022.160108. DOI: https://doi.org/10.1016/j.scitotenv.2022.160108
Barbey, C., Chane, A., Burini, J. F., Maillot, O., Merieau, A., et al. (2018). A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Frontiers in microbiology, 9, 2800. https://doi.org/10.3389/fmicb.2018.02800. DOI: https://doi.org/10.3389/fmicb.2018.02800
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in plant science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068. DOI: https://doi.org/10.3389/fpls.2019.01068
Bhattacherjee, A. K., Shukla, P. K., & Dikshit, A. (2020). Microbial Biotransformation of Neonicotinoid Insecticides in Soil – A Review. International Journal of Current Microbiology and Applied Sciences, 9(7), 3255–3277. doi: 10.20546/ijcmas.2020.907.380. DOI: https://doi.org/10.20546/ijcmas.2020.907.380
Bordin, A. I., Cohen, N. D., Giguère, S., Bray, J. M., Berghaus, L. J., Scott, B., Johnson, R., & Hook, M. (2021). Host-directed therapy in foals can enhance functional innate immunity and reduce severity of Rhodococcus equi pneumonia. Scientific reports, 11(1), 2483. https://doi.org/10.1038/s41598-021-82049-y. DOI: https://doi.org/10.1038/s41598-021-82049-y
Brookbank, B. P., Patel, J., Gazzarrini, S., & Nambara, E. (2021). Role of Basal ABA in Plant Growth and Development. Genes, 12(12), 1936. https://doi.org/10.3390/genes12121936. DOI: https://doi.org/10.3390/genes12121936
Cai, Z., Li, M., Zhu, Z., Wang, X., Huang, Y., Li, T., Gong, H., & Yan, M. (2023). Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms, 11(7), 1661. https://doi.org/10.3390/microorganisms11071661. DOI: https://doi.org/10.3390/microorganisms11071661
Camara, M. C., Campos, E.V.R, Monteiro, R.A., Pereira, A.E.S., Proença, P.L.F., & Fraceto, L.F. (2019). Development of Stimuli-Responsive Nano-Based Pesticides: Emerging Opportunities for Agriculture. Journal of Nanobiotechnology, 17(1), 100. doi: 10.1186/s12951-019-0533-8. DOI: https://doi.org/10.1186/s12951-019-0533-8
Castrejón-Godínez, M. L., Tovar-Sánchez, E., Valencia-Cuevas, L., Rosas-Ramírez, M. E., Rodríguez, A., & Mussali-Galante, P. (2021). Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms, 9(11), 2322. https://doi.org/10.3390/microorganisms9112322. DOI: https://doi.org/10.3390/microorganisms9112322
Chakraborty, S., Bashir, Y., Sirotiya, V., Ahirwar, A., Das, S., & Vinayak, V. (2023). Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon, 9(5), e16205. https://doi.org/10.1016/j.heliyon.2023.e16205. DOI: https://doi.org/10.1016/j.heliyon.2023.e16205
Chaturvedi, N. K. (2022). Comparison of Available Treatment Techniques for Hazardous Aniline-Based Organic Contaminants. Applied Water Science, 12(7), 173. doi: 10.1007/s13201-022-01695-3. DOI: https://doi.org/10.1007/s13201-022-01695-3
Costas-Ferreira, C., & Faro, L. R. F. (2021). Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. International journal of molecular sciences, 22(16), 8413. https://doi.org/10.3390/ijms22168413. DOI: https://doi.org/10.3390/ijms22168413
da Silveira, B. P., Gressler, L. T., Cargnelutti, J. F., Bordin, A. I., & de Vargas, A. C. (2020). GAPDH, rhbC, and vapA gene expression in Rhodococcus equi cultured under different iron concentrations. Microbial pathogenesis, 139, 103885. https://doi.org/10.1016/j.micpath.2019.103885. DOI: https://doi.org/10.1016/j.micpath.2019.103885
Dai, Z. L., Yang, W. L., Fan, Z. X., Guo, L., Liu, Z. H., & Dai, Y. J. (2021). Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere, 270, 128670. https://doi.org/10.1016/ j.chemosphere.2020.128670. DOI: https://doi.org/10.1016/j.chemosphere.2020.128670
D'Ambrosio, D. A., Kennedy, G.G., & Huseth, A.S. (2020). Frankliniella fusca and Frankliniella occidentalis Response to Thrips-Active Cry51Aa2.834_16 Bt Cotton with and without Neonicotinoid Seed Treatment. Crop Protection, 129, 105042. doi: 10.1016/j.cropro.2019.105042. DOI: https://doi.org/10.1016/j.cropro.2019.105042
Djouaka, R., Soglo, M. F., Kusimo, M. O., Adéoti, R., Talom, A., et al. (2018). The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. International journal of environmental research and public health, 15(7), 1536. https://doi.org/10.3390/ijerph15071536. DOI: https://doi.org/10.3390/ijerph15071536
Dubert, J., Barja, J. L., & Romalde, J. L. (2017). New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Frontiers in microbiology, 8, 762. https://doi.org/10.3389/fmicb.2017.00762. DOI: https://doi.org/10.3389/fmicb.2017.00762
Firdous, S., Samina, I., & Samina, A. (2020). Optimization and Modeling of Glyphosate Biodegradation by a Novel Comamonas odontotermitis P2 through Response Surface Methodology. Pedosphere, 30(5), 618–27. doi: 10.1016/S1002-0160(17)60381-3. DOI: https://doi.org/10.1016/S1002-0160(17)60381-3
Ghatge, S., Yang, Y., Ahn, J.H., & Hur, G.H. (2020). Biodegradation of Polyethylene: A Brief Review. Applied Biological Chemistry, 63(1), 27. doi: 10.1186/s13765-020-00511-3. DOI: https://doi.org/10.1186/s13765-020-00511-3
Ghosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A. K., & Jain, R. K. (2010). Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environmental science & technology, 44(3), 1069–1077. https://doi.org/10.1021/es9034123. DOI: https://doi.org/10.1021/es9034123
Ghosh, A., Paul, D., Prakash, D., Mayilraj, S., & Jain, R. K. (2006). Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. International journal of systematic and evolutionary microbiology, 56(Pt 8), 1965–1969. https://doi.org/10.1099/ ijs.0.63939-0. DOI: https://doi.org/10.1099/ijs.0.63939-0
Gleń-Karolczyk, K., Boligłowa, E., Gospodarek, J., Antonkiewicz, J., & Luty, L. (2021). Effect of Seed Dressing and Soil Chemical Properties on Communities of Microorganisms Associated with Pre-Emergence Damping-Off of Broad Bean Seedlings. Agronomy, 11(9):1889. doi: 10.3390/agronomy11091889. DOI: https://doi.org/10.3390/agronomy11091889
Gomes, A. F. R., Sousa, E., & Resende, D.I.S.P. (2024). A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS Omega, 9(25), 26863–77. doi: 10.1021/acsomega.4c03042. DOI: https://doi.org/10.1021/acsomega.4c03042
Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/ s40793-023-00521-w. DOI: https://doi.org/10.1186/s40793-023-00521-w
Hecko, S., Schiefer, A., Badenhorst, C. P. S., Fink, M. J., Mihovilovic, M. D., Bornscheuer, U. T., & Rudroff, F. (2023). Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chemical reviews, 123(6), 2832–2901. https://doi.org/10.1021/acs.chemrev.2c00304. DOI: https://doi.org/10.1021/acs.chemrev.2c00304
Hofmann, M., Heine, T., Malik, L., Hofmann, S., Joffroy, K., Senges, C. H. R., Bandow, J. E., & Tischler, D. (2021). Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms, 9(1), 111. https://doi.org/10.3390/microorganisms9010111. DOI: https://doi.org/10.3390/microorganisms9010111
Hu, F., Yang, L., Wang, Z., & Wang, J. (2021). Genome and transcriptome sequencing of a newly isolated 2,4-dinitrophenol-degrading strain Rhodococcus imtechensis XM24D. Genes & genomics, 43(7), 829–835. https://doi.org/10.1007/s13258-021-01101-3. DOI: https://doi.org/10.1007/s13258-021-01101-3
Huang, J., Ai, G., Liu, N., & Huang, Y. (2022). Environmental Adaptability and Organic Pollutant Degradation Capacity of a Novel Rhodococcus Species Derived from Soil in the Uninhabited Area of the Qinghai-Tibet Plateau. Microorganisms, 10(10), 1935. https://doi.org/10.3390/microorganisms10101935. DOI: https://doi.org/10.3390/microorganisms10101935
Islam, S.M.F., & Karim, Z. (2020). World's Demand for Food and Water: The Consequences of Climate Change. In M. H. D. A. Farahani, V. Vatanpour, & A. H. Taheri (Eds.) Desalination - Challenges and Opportunities. IntechOpen. DOI: 10.5772/intechopen.85919 DOI: https://doi.org/10.5772/intechopen.85919
Kaushik, S., He, H., & Dalbey, R. E. (2022). Bacterial Signal Peptides- Navigating the Journey of Proteins. Frontiers in physiology, 13, 933153. https://doi.org/10.3389/fphys.2022.933153 DOI: https://doi.org/10.3389/fphys.2022.933153
Ke, X., Guan-Jun, D., Bin-Xiang, M., Zhi-Qiang, L., Jin-Feng, Z., & Yu-Guo, Z. (2017). Characterization of a Novel CYP51 from RhodococcusTriatomae and Its NADH-Ferredoxin Reductase-Coupled Application in Lanosterol 14α-Demethylation. Process Biochemistry, 62, 59–68. doi: 10.1016/j.procbio.2017.07.030. DOI: https://doi.org/10.1016/j.procbio.2017.07.030
Khilyas, I. V., Sorokina, A. V., Markelova, M. I., Belenikin, M., Shafigullina, L., et al. (2021). Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Archives of microbiology, 203(2), 855–860. https://doi.org/10.1007/s00203-020-02057-w. DOI: https://doi.org/10.1007/s00203-020-02057-w
Kim, D., Choi, K. Y., Yoo, M., Zylstra, G. J., & Kim, E. (2018). Biotechnological Potential of Rhodococcus Biodegradative Pathways. Journal of microbiology and biotechnology, 28(7), 1037–1051. https://doi.org/10.4014/jmb.1712.12017. DOI: https://doi.org/10.4014/jmb.1712.12017
Krivoruchko, A., Kuyukina, M., Peshkur, T., Cunningham, C. J., & Ivshina, I. (2023). Rhodococcus Strains from the Specialized Collection of Alkanotrophs for Biodegradation of Aromatic Compounds. Molecules (Basel, Switzerland), 28(5), 2393. https://doi.org/10.3390/molecules28052393. DOI: https://doi.org/10.3390/molecules28052393
Kuhl, T., Chowdhury, S. P., Uhl, J., & Rothballer, M. (2021). Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant-Microbe Interaction Traits. Frontiers in microbiology, 12, 708605. https://doi.org/10.3389/fmicb.2021.708605. DOI: https://doi.org/10.3389/fmicb.2021.708605
Kuhl, T., Felder, M., Nussbaumer, T., Fischer, D., Kublik, S., Paul Chowdhury, S., Schloter, M., & Rothballer, M. (2019). De Novo Genome Assembly of a Plant-Associated Rhodococcus qingshengii Strain (RL1) Isolated from Eruca sativa Mill. and Showing Plant Growth-Promoting Properties. Microbiology Resource Announcements, 8(46), e01106-19. https://doi.org/10.1128/MRA.01106-19. DOI: https://doi.org/10.1128/MRA.01106-19
Kumar, L., Patel, S. K. S., Kharga, K., Kumar, R., Kumar, P., et al. (2022). Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules (Basel, Switzerland), 27(21), 7584. https://doi.org/10.3390/molecules27217584. DOI: https://doi.org/10.3390/molecules27217584
Kusada, H., Tamaki, H., Kamagata, Y., Hanada, S., & Kimura, N. (2017). A Novel Quorum-Quenching N-Acylhomoserine Lactone Acylase from Acidovorax sp. Strain MR-S7 Mediates Antibiotic Resistance. Applied and environmental microbiology, 83(13), e00080-17. https://doi.org/10.1128/AEM.00080-17. DOI: https://doi.org/10.1128/AEM.00080-17
Mawang, C. I., Azman, A. S., Fuad, A. M., & Ahamad, M. (2021). Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants. Biotechnology reports (Amsterdam, Netherlands), 32, e00679. https://doi.org/10.1016/j.btre.2021.e00679. DOI: https://doi.org/10.1016/j.btre.2021.e00679
Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709. DOI: https://doi.org/10.3389/fmicb.2020.580709
Murugayah, S. A., & Gerth, M. L. (2019). Engineering quorum quenching enzymes: progress and perspectives. Biochemical Society transactions, 47(3), 793–800. https://doi.org/10.1042/ BST20180165. DOI: https://doi.org/10.1042/BST20180165
Nguyen, N. T., Vo, V. T., Nguyen, T. H. P., & Kiefer, R. (2022). Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Archives of microbiology, 204(5), 252. https://doi.org/10.1007/s00203-022-02875-0. DOI: https://doi.org/10.1007/s00203-022-02875-0
Okoye, C. O., Addey, C.I., Oderinde, O., Okoro, J.O., Uwamungu, J.Y., et al. (2022). Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. Chemical Engineering Journal Advances, 11, 100310. doi: 10.1016/j.ceja.2022.100310. DOI: https://doi.org/10.1016/j.ceja.2022.100310
Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E., & Jermakow, K. (2020). Prevention of biofilm formation by quorum quenching. Applied microbiology and biotechnology, 104(5), 1871–1881. https://doi.org/10.1007/s00253-020-10349-w. DOI: https://doi.org/10.1007/s00253-020-10349-w
Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in microbiology, 13, 824084. https://doi.org/10.3389/fmicb.2022.824084. DOI: https://doi.org/10.3389/fmicb.2022.824084
Pang, S., Lin, Z., Zhang, W., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Frontiers in microbiology, 11, 868. https://doi.org/10.3389/fmicb.2020.00868. DOI: https://doi.org/10.3389/fmicb.2020.00868
Park, S. Y., Hwang, B. J., Shin, M. H., Kim, J. A., Kim, H. K., & Lee, J. K. (2006). N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS microbiology letters, 261(1), 102–108. https://doi.org/10.1111/ j.1574-6968.2006.00336.x. DOI: https://doi.org/10.1111/j.1574-6968.2006.00336.x
Parte, S. G., & Kharat, A. S. (2019). Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk. Journal of environmental and public health, 2019, 4807913. https://doi.org/10.1155/2019/4807913. DOI: https://doi.org/10.1155/2019/4807913
Pathak, D., Suman, A., Sharma, P., Aswini, K., Govindasamy, V., Gond, S., & Anshika, R. (2024). Community-forming traits play role in effective colonization of plant-growth-promoting bacteria and improved plant growth. Frontiers in plant science, 15, 1332745. https://doi.org/10.3389/fpls.2024.1332745. DOI: https://doi.org/10.3389/fpls.2024.1332745
Peng, F., Ye, M., Liu, Y., Liu, J., Lan, Y., Luo, A., Zhang, T., Jiang, Z., & Song, H. (2022). Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Applied microbiology and biotechnology, 106(7), 2751–2761. https://doi.org/10.1007/s00253-022-11858-6. DOI: https://doi.org/10.1007/s00253-022-11858-6
Pérez Rodríguez, M., Melo, C., Jiménez, E., & Dussán, J. (2019). Glyphosate Bioremediation through the Sarcosine Oxidase Pathway Mediated by Lysinibacillus sphaericus in Soils Cultivated with Potatoes. Agriculture, 9(10), 217. doi: 10.3390/agriculture9100217. DOI: https://doi.org/10.3390/agriculture9100217
Prazdnova, E. V., Gorovtsov, A. V., Vasilchenko, N. G., Kulikov, M. P., Statsenko, V. N., et al. (2022). Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms, 10(2), 350. https://doi.org/10.3390/microorganisms10020350. DOI: https://doi.org/10.3390/microorganisms10020350
Puja, H., Mislin, G. L. A., & Rigouin, C. (2023). Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules, 13(6), 959. https://doi.org/10.3390/biom13060959. DOI: https://doi.org/10.3390/biom13060959
Raffa, C. M., & Chiampo, F. (2021). Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel, Switzerland), 8(7), 92. https://doi.org/10.3390/bioengineering8070092. DOI: https://doi.org/10.3390/bioengineering8070092
Rai, K. K., Pandey, N., Rai, N., Rai, S.K., & Pandey-Rai. S. (2021). Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Frontiers in Agronomy, 3. doi: 10.3389/fagro.2021.781027. DOI: https://doi.org/10.3389/fagro.2021.781027
Rangel, L. I., Spanner, R. E., Ebert, M. K., Pethybridge, S. J., Stukenbrock, E. H., de Jonge, R., Secor, G. A., & Bolton, M. D. (2020). Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular plant pathology, 21(8), 1020–1041. https://doi.org/10.1111/mpp.12962. DOI: https://doi.org/10.1111/mpp.12962
Rasool, S., Rasool, T., & Gani, K.M. (2022). A Review of Interactions of Pesticides within Various Interfaces of Intrinsic and Organic Residue Amended Soil Environment. Chemical Engineering Journal Advances, 11, 100301. doi: 10.1016/j.ceja.2022.100301. DOI: https://doi.org/10.1016/j.ceja.2022.100301
Rehman, Z. U., Momin, A. A., Aldehaiman, A., Irum, T., Grünberg, R., & Arold, S. T. (2022). The exceptionally efficient quorum quenching enzyme LrsL suppresses Pseudomonas aeruginosa biofilm production. Frontiers in microbiology, 13, 977673. https://doi.org/10.3389/fmicb.2022.977673. DOI: https://doi.org/10.3389/fmicb.2022.977673
Retamal-Morales, G., Mehnert, M., Schwabe, R., Tischler, D., Zapata, C., Chávez, R., Schlömann, M., & Levicán, G. (2018). Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicology and environmental safety, 157, 176–181. https://doi.org/10.1016/ j.ecoenv.2018.03.087. DOI: https://doi.org/10.1016/j.ecoenv.2018.03.087
Ryu, D. H., Lee, S. W., Mikolaityte, V., Kim, Y. W., Jeong, H. Y., et al. (2020). Identification of a Second Type of AHL-lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily. Journal of microbiology and biotechnology, 30(6), 937–945. https://doi.org/10.4014/jmb.2001.01006. DOI: https://doi.org/10.4014/jmb.2001.01006
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., et al. (2021). Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International journal of molecular sciences, 22(19), 10529. https://doi.org/10.3390/ijms221910529. DOI: https://doi.org/10.3390/ijms221910529
Safiarian, M. S., Ugboya, A., Khan, I., Marichev, K. O., & Grant, K. B. (2023). New Insights into the Phototoxicity of Anthracene-Based Chromophores: The Chloride Salt Effect†. Chemical research in toxicology, 36(7), 1002–1020. https://doi.org/10.1021/acs.chemrestox.2c00235. DOI: https://doi.org/10.1021/acs.chemrestox.2c00235
Sakr, S., & Rashad, W. A. (2023). Lambda-cyhalothrin-induced pancreatic toxicity in adult albino rats. Scientific reports, 13(1), 11562. https://doi.org/10.1038/s41598-023-38661-1. DOI: https://doi.org/10.1038/s41598-023-38661-1
Santillan, J. Y., Rojas, N.L. Ghiringhelli, P.D., Nóbile, M.L. Lewkowicz, E.S., & Iribarren, A.M. (2020). Organophosphorus Compounds Biodegradation by Novel Bacterial Isolates and Their Potential Application in Bioremediation of Contaminated Water. Bioresource Technology, 317, 124003. doi: 10.1016/j.biortech.2020.124003. DOI: https://doi.org/10.1016/j.biortech.2020.124003
Sarveswari, H. B., & Solomon, A. P. (2019). Profile of the Intervention Potential of the Phylum Actinobacteria Toward Quorum Sensing and Other Microbial Virulence Strategies. Frontiers in microbiology, 10, 2073. https://doi.org/10.3389/ fmicb.2019.02073. DOI: https://doi.org/10.3389/fmicb.2019.02073
Sengupta, K., Alam, M., Pailan, S., & Saha, P. (2019a). Biodegradation of 4-Nitrophenol by a Rhodococcus Species and a Preliminary Insight into Its Toxicoproteome Based on Mass Spectrometry Analysis. Journal of Environmental Biology, 40(3), 356–362. doi: 10.22438/jeb/40/3/MRN-931. DOI: https://doi.org/10.22438/jeb/40/3/MRN-931
Sengupta, K., Swain, M. T., Livingstone, P. G., Whitworth, D. E., & Saha, P. (2019b). Genome Sequencing and Comparative Transcriptomics Provide a Holistic View of 4-Nitrophenol Degradation and Concurrent Fatty Acid Catabolism by Rhodococcus sp. Strain BUPNP1. Frontiers in microbiology, 9, 3209. https://doi.org/10.3389/fmicb.2018.03209. DOI: https://doi.org/10.3389/fmicb.2018.03209
Sharma, V., Mohammed, S. A., Devi, N., Vats, G., Tuli, H. S., Saini, A. K., Dhir, Y. W., Dhir, S., & Singh, B. (2024). Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. Stress biology, 4(1), 10. https://doi.org/10.1007/s44154-023-00126-w. DOI: https://doi.org/10.1007/s44154-023-00126-w
Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert review of anti-infective therapy, 18(12), 1221–1233. https://doi.org/10.1080/14787210.2020.1794815. DOI: https://doi.org/10.1080/14787210.2020.1794815
Singh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., et al. (2020). Herbicide Glyphosate: Toxicity and Microbial Degradation. International journal of environmental research and public health, 17(20), 7519. https://doi.org/10.3390/ijerph17207519. DOI: https://doi.org/10.3390/ijerph17207519
Srimathi, K., & Suji, H.A. (2019). Siderophores Detection by Using Blue Agar CAS Assay Methods. International Journal of Scientific Research in Biological Sciences, 5(6), 180–85. doi: 10.26438/ijsrbs/v5i6.180185. DOI: https://doi.org/10.26438/ijsrbs/v5i6.180185
Srinivasulu, M., Nilanjan, P. C., Chakravarthi, B. V. S. K., Jayabaskaran, C., Jaffer, M. G., et al. (2017). Biodegradation of Monocrotophos by Bacteria Isolated from Soil. African Journal of Biotechnology, 16(9), 408–17. doi: 10.5897/AJB2015.14885. DOI: https://doi.org/10.5897/AJB2015.14885
Sun, M., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water research, 163, 114840. https://doi.org/10.1016/j.watres.2019.07.007. DOI: https://doi.org/10.1016/j.watres.2019.07.007
Suttinun, O., Müller, R., & Luepromchai, E. (2010). Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils. Applied and environmental microbiology, 76(14), 4684–4690. https://doi.org/10.1128/AEM.03036-09. DOI: https://doi.org/10.1128/AEM.03036-09
Swangjang, K. (2022). Linkage of Sustainability to Environmental Impact Assessment Using the Concept of Ecosystem Services: Lessons from Thailand. Sustainability, 14(9), 5487. doi: 10.3390/su14095487. DOI: https://doi.org/10.3390/su14095487
Takeo, M., Yamamoto, K., Sonoyama, M., Miyanaga, K., Kanbara, N., Honda, K., Kato, D. I., & Negoro, S. (2018). Characterization of the 3-methyl-4-nitrophenol degradation pathway and genes of Pseudomonas sp. strain TSN1. Journal of bioscience and bioengineering, 126(3), 355–362. https://doi.org/10.1016/j.jbiosc.2018.04.001. DOI: https://doi.org/10.1016/j.jbiosc.2018.04.001
Taşkan, B., & Taşkan, E. (2021). Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere, 285, 131538. https://doi.org/10.1016/j.chemosphere.2021.131538. DOI: https://doi.org/10.1016/j.chemosphere.2021.131538
Thi Mo, L., Irina, P., Natalia, S., Irina, N., Lenar, A., et al. (2022). Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms, 10(8), 1594. doi: 10.3390/microorganisms10081594. DOI: https://doi.org/10.3390/microorganisms10081594
Tyumina, E., Bazhutin, G., Kostrikina, N., Sorokin, V., Mulyukin, A., & Ivshina, I. (2023). Phenotypic and metabolic adaptations of Rhodococcus cerastii strain IEGM 1243 to separate and combined effects of diclofenac and ibuprofen. Frontiers in microbiology, 14, 1275553. https://doi.org/10.3389/fmicb.2023.1275553. DOI: https://doi.org/10.3389/fmicb.2023.1275553
Uroz, S., Chhabra, S. R., Cámara, M., Williams, P., Oger, P., & Dessaux, Y. (2005). N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology (Reading, England), 151(Pt 10), 3313–3322. https://doi.org/10.1099/mic.0.27961-0. DOI: https://doi.org/10.1099/mic.0.27961-0
Utari, P. D., Vogel, J., & Quax, W. J. (2017). Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Frontiers in microbiology, 8, 1123. https://doi.org/10.3389/ fmicb.2017.01123. DOI: https://doi.org/10.3389/fmicb.2017.01123
Vázquez-Boland, J. A., & Meijer, W. G. (2019). The pathogenic actinobacterium Rhodococcus equi: what's in a name?. Molecular microbiology, 112(1), 1–15. https://doi.org/10.1111/mmi.14267 DOI: https://doi.org/10.1111/mmi.14267
Wang, X., Lu, H., Li, Q., Zhou, Y., & Zhou, J. (2022). Comparative genome and transcriptome of Rhodococcus pyridinivorans GF3 for analyzing the detoxification mechanism of anthraquinone compounds. Ecotoxicology and environmental safety, 237, 113545. https://doi.org/10.1016/j.ecoenv.2022.113545. DOI: https://doi.org/10.1016/j.ecoenv.2022.113545
Ward, A. L., Reddyvari, P., Borisova, R., Shilabin, A. G., & Lampson, B. C. (2018). An inhibitory compound produced by a soil isolate of Rhodococcus has strong activity against the veterinary pathogen R. equi. PloS one, 13(12), e0209275. https://doi.org/10.1371/journal.pone.0209275. DOI: https://doi.org/10.1371/journal.pone.0209275
Wrońska, N., Brzostek, A., Szewczyk, R., Soboń, A., Dziadek, J., & Lisowska, K. (2016). The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis. Molecules (Basel, Switzerland), 21(5), 598. https://doi.org/10.3390/molecules21050598. DOI: https://doi.org/10.3390/molecules21050598
Xiang, W., Liang, Y., Hong, S., Wang, G., You, J., Xue, Y., & Ma, Y. (2022). Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain. Archives of microbiology, 204(5), 259. https://doi.org/10.1007/s00203-022-02872-3. DOI: https://doi.org/10.1007/s00203-022-02872-3
Xu, B., Xue, R., Zhou, J., Wen, X., Shi, Z., et al. (2020). Characterization of Acetamiprid Biodegradation by the Microbial Consortium ACE-3 Enriched From Contaminated Soil. Frontiers in microbiology, 11, 1429. https://doi.org/10.3389/fmicb.2020.01429. DOI: https://doi.org/10.3389/fmicb.2020.01429
Yasin, R., Rashid, G.M.M., Ali, I., & Bugg, T.D.H (2023). Engineering of Rhodococcus jostii RHA1 for Utilisation of Carboxymethylcellulose. Heliyon 9(9), e19511. doi: 10.1016/j.heliyon.2023.e19511. DOI: https://doi.org/10.1016/j.heliyon.2023.e19511
Yin, Y., Zhang, Q., & Peng, H. (2023). Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. Journal of environmental management, 330, 117133. https://doi.org/10.1016/j.jenvman.2022.117133. DOI: https://doi.org/10.1016/j.jenvman.2022.117133
Yousef, H. A., Fahmy, H.M., Arafa, F.N., Abd Allah, M.Y., Tawfik, Y.M., et al. (2023). Nanotechnology in Pest Management: Advantages, Applications, and Challenges. International Journal of Tropical Insect Science, 43(5), 1387–1399. doi: 10.1007/s42690-023-01053-z. DOI: https://doi.org/10.1007/s42690-023-01053-z
Yuzikhin, O. S., Gogoleva, N. E., Shaposhnikov, A. I., Konnova, T. A., Osipova, E. V., et al. (2021). Rhizosphere Bacterium Rhodococcus sp. P1Y Metabolizes Abscisic Acid to Form Dehydrovomifoliol. Biomolecules, 11(3), 345. https://doi.org/10.3390/biom11030345. DOI: https://doi.org/10.3390/biom11030345
Zampolli, J., Mangiagalli, M., Vezzini, D., Lasagni, M., Ami, D., et al. (2023). Oxidative Degradation of Polyethylene by Two Novel Laccase-like Multicopper Oxidases from Rhodococcus opacus R7. Environmental Technology & Innovation, 32, 103273. doi: 10.1016/j.eti.2023.103273. DOI: https://doi.org/10.1016/j.eti.2023.103273
Zampolli, J., Orro, A., Manconi, A., Ami, D., Natalello, A., & Di Gennaro, P. (2021). Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Scientific reports, 11(1), 21311. https://doi.org/10.1038/s41598-021-00525-x. DOI: https://doi.org/10.1038/s41598-021-00525-x
Zampolli, J., Orro, A., Vezzini, D., & Di Gennaro, P. (2022). Genome-Based Exploration of Rhodococcus Species for Plastic-
Degrading Genetic Determinants Using Bioinformatic Analysis. Microorganisms, 10(9), 1846. https://doi.org/10.3390/ microorganisms10091846.
Zampolli, J., Vezzini, D., Brocca, S., & Di Gennaro, P. (2024). Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Rhodococcus bacteria. Frontiers in microbiology, 14, 1284956. https://doi.org/10.3389/ fmicb.2023.1284956. DOI: https://doi.org/10.3389/fmicb.2023.1284956
Zhang, T., & Zhang, H. (2022). Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms, 10(2), 261. https://doi.org/10.3390/microorganisms10020261. DOI: https://doi.org/10.3390/microorganisms10020261
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.