Unveiling the positive impacts of the genus Rhodococcus on plant and environmental health

Authors

  • Shakeel Ahmed Mohammed Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India https://orcid.org/0009-0002-1571-2759
  • Shahbaz Aman Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India https://orcid.org/0000-0002-9929-8534
  • Bharat Singh Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India https://orcid.org/0000-0001-9290-1225

DOI:

https://doi.org/10.18006/2024.12(4).557.572

Keywords:

Agriculture, Bioremediation, Pesticides, Rhodococcus, Siderophore

Abstract

Organic farming has emerged as a sustainable solution to the adverse effects (diminished nutritional value, compromised food quality, environmental contamination, and public health hazards) that are usually associated with harmful chemical pesticides. To overcome such loss, one must explore the plant-associated microbes that are the naturally occurring root commensal and could positively improve crop health. In this review, we highlight the importance of the bacterial genus Rhodococcus, a subset of Actinobacteria that carries immense potential in enhancing crop yield and is associated with bioremediation of toxic pesticides and other chemicals to improve soil health. However, it has been noticed that few species of Rhodococcus are pathogenic for the plant (R. fascians) as well as humans/animals (R. equi). But still, the majority of Rhodococcus isolates are found to be non-pathogenic and carry substantial beneficial traits. Here, we have attempted to comprise those beneficial traits of the different members of the genus Rhodococcus. The main emphasis of this review article is to explore the major areas such as enzyme production, phytohormone synthesis, growth regulation, siderophore production, bioremediation, organic compound degradation, and environmental pollution control. Opinions towards the applications of advanced methodologies for utilizing the cumulative prospective potential of the genus Rhodococcus have also been discussed in the different sections of the review. Conclusively, this article gathers the scattered information from the past and recent literature about this bacteria and provides the future direction about how it can improve plant/soil health and eliminate toxic chemicals and environmental pollutants.

Author Biographies

Shakeel Ahmed Mohammed, Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Shahbaz Aman, Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Department of Microbiology, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Bharat Singh, Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

Central Research Cell and Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India

References

Ahirwar, N. K. (2023). Advanced Pesticide Nano Formulations and Understanding Their Breakdown by Bacteria. Indian Journal of Microbiology Research, 10(4), 193–201. doi: 10.18231/j.ijmr.2023.035.

Alam, S. A., & Saha, P. (2022). Microbial Biodegradation of Nitrophenols and Their Derivatives: A Review. Journal of Experimental Biology and Agricultural Sciences, 10(4):743–66. doi: 10.18006/2022.10(4).743.766.

Aslam, S., Jing, Y., & Nowak, K. M. (2023). Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: Implications for environmental risk assessment. Journal of hazardous materials, 447, 130847. https://doi.org/10.1016/j.jhazmat.2023.130847.

Bacha, A. U., Nabi, I., Zaheer, M., Jin, W., & Yang, L. (2023). Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. The Science of the total environment, 858(Pt 3), 160108. https://doi.org/10.1016/j.scitotenv.2022.160108.

Barbey, C., Chane, A., Burini, J. F., Maillot, O., Merieau, A., et al. (2018). A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Frontiers in microbiology, 9, 2800. https://doi.org/10.3389/fmicb.2018.02800.

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in plant science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068.

Bhattacherjee, A. K., Shukla, P. K., & Dikshit, A. (2020). Microbial Biotransformation of Neonicotinoid Insecticides in Soil – A Review. International Journal of Current Microbiology and Applied Sciences, 9(7), 3255–3277. doi: 10.20546/ijcmas.2020.907.380.

Bordin, A. I., Cohen, N. D., Giguère, S., Bray, J. M., Berghaus, L. J., Scott, B., Johnson, R., & Hook, M. (2021). Host-directed therapy in foals can enhance functional innate immunity and reduce severity of Rhodococcus equi pneumonia. Scientific reports, 11(1), 2483. https://doi.org/10.1038/s41598-021-82049-y.

Brookbank, B. P., Patel, J., Gazzarrini, S., & Nambara, E. (2021). Role of Basal ABA in Plant Growth and Development. Genes, 12(12), 1936. https://doi.org/10.3390/genes12121936.

Cai, Z., Li, M., Zhu, Z., Wang, X., Huang, Y., Li, T., Gong, H., & Yan, M. (2023). Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms, 11(7), 1661. https://doi.org/10.3390/microorganisms11071661.

Camara, M. C., Campos, E.V.R, Monteiro, R.A., Pereira, A.E.S., Proença, P.L.F., & Fraceto, L.F. (2019). Development of Stimuli-Responsive Nano-Based Pesticides: Emerging Opportunities for Agriculture. Journal of Nanobiotechnology, 17(1), 100. doi: 10.1186/s12951-019-0533-8.

Castrejón-Godínez, M. L., Tovar-Sánchez, E., Valencia-Cuevas, L., Rosas-Ramírez, M. E., Rodríguez, A., & Mussali-Galante, P. (2021). Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms, 9(11), 2322. https://doi.org/10.3390/microorganisms9112322.

Chakraborty, S., Bashir, Y., Sirotiya, V., Ahirwar, A., Das, S., & Vinayak, V. (2023). Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon, 9(5), e16205. https://doi.org/10.1016/j.heliyon.2023.e16205.

Chaturvedi, N. K. (2022). Comparison of Available Treatment Techniques for Hazardous Aniline-Based Organic Contaminants. Applied Water Science, 12(7), 173. doi: 10.1007/s13201-022-01695-3.

Costas-Ferreira, C., & Faro, L. R. F. (2021). Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. International journal of molecular sciences, 22(16), 8413. https://doi.org/10.3390/ijms22168413.

da Silveira, B. P., Gressler, L. T., Cargnelutti, J. F., Bordin, A. I., & de Vargas, A. C. (2020). GAPDH, rhbC, and vapA gene expression in Rhodococcus equi cultured under different iron concentrations. Microbial pathogenesis, 139, 103885. https://doi.org/10.1016/j.micpath.2019.103885.

Dai, Z. L., Yang, W. L., Fan, Z. X., Guo, L., Liu, Z. H., & Dai, Y. J. (2021). Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere, 270, 128670. https://doi.org/10.1016/ j.chemosphere.2020.128670.

D'Ambrosio, D. A., Kennedy, G.G., & Huseth, A.S. (2020). Frankliniella fusca and Frankliniella occidentalis Response to Thrips-Active Cry51Aa2.834_16 Bt Cotton with and without Neonicotinoid Seed Treatment. Crop Protection, 129, 105042. doi: 10.1016/j.cropro.2019.105042.

Djouaka, R., Soglo, M. F., Kusimo, M. O., Adéoti, R., Talom, A., et al. (2018). The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption. International journal of environmental research and public health, 15(7), 1536. https://doi.org/10.3390/ijerph15071536.

Dubert, J., Barja, J. L., & Romalde, J. L. (2017). New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Frontiers in microbiology, 8, 762. https://doi.org/10.3389/fmicb.2017.00762.

Firdous, S., Samina, I., & Samina, A. (2020). Optimization and Modeling of Glyphosate Biodegradation by a Novel Comamonas odontotermitis P2 through Response Surface Methodology. Pedosphere, 30(5), 618–27. doi: 10.1016/S1002-0160(17)60381-3.

Ghatge, S., Yang, Y., Ahn, J.H., & Hur, G.H. (2020). Biodegradation of Polyethylene: A Brief Review. Applied Biological Chemistry, 63(1), 27. doi: 10.1186/s13765-020-00511-3.

Ghosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A. K., & Jain, R. K. (2010). Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environmental science & technology, 44(3), 1069–1077. https://doi.org/10.1021/es9034123.

Ghosh, A., Paul, D., Prakash, D., Mayilraj, S., & Jain, R. K. (2006). Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. International journal of systematic and evolutionary microbiology, 56(Pt 8), 1965–1969. https://doi.org/10.1099/ ijs.0.63939-0.

Gleń-Karolczyk, K., Boligłowa, E., Gospodarek, J., Antonkiewicz, J., & Luty, L. (2021). Effect of Seed Dressing and Soil Chemical Properties on Communities of Microorganisms Associated with Pre-Emergence Damping-Off of Broad Bean Seedlings. Agronomy, 11(9):1889. doi: 10.3390/agronomy11091889.

Gomes, A. F. R., Sousa, E., & Resende, D.I.S.P. (2024). A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS Omega, 9(25), 26863–77. doi: 10.1021/acsomega.4c03042.

Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/ s40793-023-00521-w.

Hecko, S., Schiefer, A., Badenhorst, C. P. S., Fink, M. J., Mihovilovic, M. D., Bornscheuer, U. T., & Rudroff, F. (2023). Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chemical reviews, 123(6), 2832–2901. https://doi.org/10.1021/acs.chemrev.2c00304.

Hofmann, M., Heine, T., Malik, L., Hofmann, S., Joffroy, K., Senges, C. H. R., Bandow, J. E., & Tischler, D. (2021). Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms, 9(1), 111. https://doi.org/10.3390/microorganisms9010111.

Hu, F., Yang, L., Wang, Z., & Wang, J. (2021). Genome and transcriptome sequencing of a newly isolated 2,4-dinitrophenol-degrading strain Rhodococcus imtechensis XM24D. Genes & genomics, 43(7), 829–835. https://doi.org/10.1007/s13258-021-01101-3.

Huang, J., Ai, G., Liu, N., & Huang, Y. (2022). Environmental Adaptability and Organic Pollutant Degradation Capacity of a Novel Rhodococcus Species Derived from Soil in the Uninhabited Area of the Qinghai-Tibet Plateau. Microorganisms, 10(10), 1935. https://doi.org/10.3390/microorganisms10101935.

Islam, S.M.F., & Karim, Z. (2020). World's Demand for Food and Water: The Consequences of Climate Change. In M. H. D. A. Farahani, V. Vatanpour, & A. H. Taheri (Eds.) Desalination - Challenges and Opportunities. IntechOpen. DOI: 10.5772/intechopen.85919

Kaushik, S., He, H., & Dalbey, R. E. (2022). Bacterial Signal Peptides- Navigating the Journey of Proteins. Frontiers in physiology, 13, 933153. https://doi.org/10.3389/fphys.2022.933153

Ke, X., Guan-Jun, D., Bin-Xiang, M., Zhi-Qiang, L., Jin-Feng, Z., & Yu-Guo, Z. (2017). Characterization of a Novel CYP51 from RhodococcusTriatomae and Its NADH-Ferredoxin Reductase-Coupled Application in Lanosterol 14α-Demethylation. Process Biochemistry, 62, 59–68. doi: 10.1016/j.procbio.2017.07.030.

Khilyas, I. V., Sorokina, A. V., Markelova, M. I., Belenikin, M., Shafigullina, L., et al. (2021). Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment. Archives of microbiology, 203(2), 855–860. https://doi.org/10.1007/s00203-020-02057-w.

Kim, D., Choi, K. Y., Yoo, M., Zylstra, G. J., & Kim, E. (2018). Biotechnological Potential of Rhodococcus Biodegradative Pathways. Journal of microbiology and biotechnology, 28(7), 1037–1051. https://doi.org/10.4014/jmb.1712.12017.

Krivoruchko, A., Kuyukina, M., Peshkur, T., Cunningham, C. J., & Ivshina, I. (2023). Rhodococcus Strains from the Specialized Collection of Alkanotrophs for Biodegradation of Aromatic Compounds. Molecules (Basel, Switzerland), 28(5), 2393. https://doi.org/10.3390/molecules28052393.

Kuhl, T., Chowdhury, S. P., Uhl, J., & Rothballer, M. (2021). Genome-Based Characterization of Plant-Associated Rhodococcus qingshengii RL1 Reveals Stress Tolerance and Plant-Microbe Interaction Traits. Frontiers in microbiology, 12, 708605. https://doi.org/10.3389/fmicb.2021.708605.

Kuhl, T., Felder, M., Nussbaumer, T., Fischer, D., Kublik, S., Paul Chowdhury, S., Schloter, M., & Rothballer, M. (2019). De Novo Genome Assembly of a Plant-Associated Rhodococcus qingshengii Strain (RL1) Isolated from Eruca sativa Mill. and Showing Plant Growth-Promoting Properties. Microbiology Resource Announcements, 8(46), e01106-19. https://doi.org/10.1128/MRA.01106-19.

Kumar, L., Patel, S. K. S., Kharga, K., Kumar, R., Kumar, P., et al. (2022). Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules (Basel, Switzerland), 27(21), 7584. https://doi.org/10.3390/molecules27217584.

Kusada, H., Tamaki, H., Kamagata, Y., Hanada, S., & Kimura, N. (2017). A Novel Quorum-Quenching N-Acylhomoserine Lactone Acylase from Acidovorax sp. Strain MR-S7 Mediates Antibiotic Resistance. Applied and environmental microbiology, 83(13), e00080-17. https://doi.org/10.1128/AEM.00080-17.

Mawang, C. I., Azman, A. S., Fuad, A. M., & Ahamad, M. (2021). Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants. Biotechnology reports (Amsterdam, Netherlands), 32, e00679. https://doi.org/10.1016/j.btre.2021.e00679.

Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in microbiology, 11, 580709. https://doi.org/10.3389/fmicb.2020.580709.

Murugayah, S. A., & Gerth, M. L. (2019). Engineering quorum quenching enzymes: progress and perspectives. Biochemical Society transactions, 47(3), 793–800. https://doi.org/10.1042/ BST20180165.

Nguyen, N. T., Vo, V. T., Nguyen, T. H. P., & Kiefer, R. (2022). Isolation and optimization of a glyphosate-degrading Rhodococcus soli G41 for bioremediation. Archives of microbiology, 204(5), 252. https://doi.org/10.1007/s00203-022-02875-0.

Okoye, C. O., Addey, C.I., Oderinde, O., Okoro, J.O., Uwamungu, J.Y., et al. (2022). Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. Chemical Engineering Journal Advances, 11, 100310. doi: 10.1016/j.ceja.2022.100310.

Paluch, E., Rewak-Soroczyńska, J., Jędrusik, I., Mazurkiewicz, E., & Jermakow, K. (2020). Prevention of biofilm formation by quorum quenching. Applied microbiology and biotechnology, 104(5), 1871–1881. https://doi.org/10.1007/s00253-020-10349-w.

Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in microbiology, 13, 824084. https://doi.org/10.3389/fmicb.2022.824084.

Pang, S., Lin, Z., Zhang, W., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Frontiers in microbiology, 11, 868. https://doi.org/10.3389/fmicb.2020.00868.

Park, S. Y., Hwang, B. J., Shin, M. H., Kim, J. A., Kim, H. K., & Lee, J. K. (2006). N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS microbiology letters, 261(1), 102–108. https://doi.org/10.1111/ j.1574-6968.2006.00336.x.

Parte, S. G., & Kharat, A. S. (2019). Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk. Journal of environmental and public health, 2019, 4807913. https://doi.org/10.1155/2019/4807913.

Pathak, D., Suman, A., Sharma, P., Aswini, K., Govindasamy, V., Gond, S., & Anshika, R. (2024). Community-forming traits play role in effective colonization of plant-growth-promoting bacteria and improved plant growth. Frontiers in plant science, 15, 1332745. https://doi.org/10.3389/fpls.2024.1332745.

Peng, F., Ye, M., Liu, Y., Liu, J., Lan, Y., Luo, A., Zhang, T., Jiang, Z., & Song, H. (2022). Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Applied microbiology and biotechnology, 106(7), 2751–2761. https://doi.org/10.1007/s00253-022-11858-6.

Pérez Rodríguez, M., Melo, C., Jiménez, E., & Dussán, J. (2019). Glyphosate Bioremediation through the Sarcosine Oxidase Pathway Mediated by Lysinibacillus sphaericus in Soils Cultivated with Potatoes. Agriculture, 9(10), 217. doi: 10.3390/agriculture9100217.

Prazdnova, E. V., Gorovtsov, A. V., Vasilchenko, N. G., Kulikov, M. P., Statsenko, V. N., et al. (2022). Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms, 10(2), 350. https://doi.org/10.3390/microorganisms10020350.

Puja, H., Mislin, G. L. A., & Rigouin, C. (2023). Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules, 13(6), 959. https://doi.org/10.3390/biom13060959.

Raffa, C. M., & Chiampo, F. (2021). Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel, Switzerland), 8(7), 92. https://doi.org/10.3390/bioengineering8070092.

Rai, K. K., Pandey, N., Rai, N., Rai, S.K., & Pandey-Rai. S. (2021). Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Frontiers in Agronomy, 3. doi: 10.3389/fagro.2021.781027.

Rangel, L. I., Spanner, R. E., Ebert, M. K., Pethybridge, S. J., Stukenbrock, E. H., de Jonge, R., Secor, G. A., & Bolton, M. D. (2020). Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet. Molecular plant pathology, 21(8), 1020–1041. https://doi.org/10.1111/mpp.12962.

Rasool, S., Rasool, T., & Gani, K.M. (2022). A Review of Interactions of Pesticides within Various Interfaces of Intrinsic and Organic Residue Amended Soil Environment. Chemical Engineering Journal Advances, 11, 100301. doi: 10.1016/j.ceja.2022.100301.

Rehman, Z. U., Momin, A. A., Aldehaiman, A., Irum, T., Grünberg, R., & Arold, S. T. (2022). The exceptionally efficient quorum quenching enzyme LrsL suppresses Pseudomonas aeruginosa biofilm production. Frontiers in microbiology, 13, 977673. https://doi.org/10.3389/fmicb.2022.977673.

Retamal-Morales, G., Mehnert, M., Schwabe, R., Tischler, D., Zapata, C., Chávez, R., Schlömann, M., & Levicán, G. (2018). Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay. Ecotoxicology and environmental safety, 157, 176–181. https://doi.org/10.1016/ j.ecoenv.2018.03.087.

Ryu, D. H., Lee, S. W., Mikolaityte, V., Kim, Y. W., Jeong, H. Y., et al. (2020). Identification of a Second Type of AHL-lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily. Journal of microbiology and biotechnology, 30(6), 937–945. https://doi.org/10.4014/jmb.2001.01006.

Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., et al. (2021). Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International journal of molecular sciences, 22(19), 10529. https://doi.org/10.3390/ijms221910529.

Safiarian, M. S., Ugboya, A., Khan, I., Marichev, K. O., & Grant, K. B. (2023). New Insights into the Phototoxicity of Anthracene-Based Chromophores: The Chloride Salt Effect†. Chemical research in toxicology, 36(7), 1002–1020. https://doi.org/10.1021/acs.chemrestox.2c00235.

Sakr, S., & Rashad, W. A. (2023). Lambda-cyhalothrin-induced pancreatic toxicity in adult albino rats. Scientific reports, 13(1), 11562. https://doi.org/10.1038/s41598-023-38661-1.

Santillan, J. Y., Rojas, N.L. Ghiringhelli, P.D., Nóbile, M.L. Lewkowicz, E.S., & Iribarren, A.M. (2020). Organophosphorus Compounds Biodegradation by Novel Bacterial Isolates and Their Potential Application in Bioremediation of Contaminated Water. Bioresource Technology, 317, 124003. doi: 10.1016/j.biortech.2020.124003.

Sarveswari, H. B., & Solomon, A. P. (2019). Profile of the Intervention Potential of the Phylum Actinobacteria Toward Quorum Sensing and Other Microbial Virulence Strategies. Frontiers in microbiology, 10, 2073. https://doi.org/10.3389/ fmicb.2019.02073.

Sengupta, K., Alam, M., Pailan, S., & Saha, P. (2019a). Biodegradation of 4-Nitrophenol by a Rhodococcus Species and a Preliminary Insight into Its Toxicoproteome Based on Mass Spectrometry Analysis. Journal of Environmental Biology, 40(3), 356–362. doi: 10.22438/jeb/40/3/MRN-931.

Sengupta, K., Swain, M. T., Livingstone, P. G., Whitworth, D. E., & Saha, P. (2019b). Genome Sequencing and Comparative Transcriptomics Provide a Holistic View of 4-Nitrophenol Degradation and Concurrent Fatty Acid Catabolism by Rhodococcus sp. Strain BUPNP1. Frontiers in microbiology, 9, 3209. https://doi.org/10.3389/fmicb.2018.03209.

Sharma, V., Mohammed, S. A., Devi, N., Vats, G., Tuli, H. S., Saini, A. K., Dhir, Y. W., Dhir, S., & Singh, B. (2024). Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. Stress biology, 4(1), 10. https://doi.org/10.1007/s44154-023-00126-w.

Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert review of anti-infective therapy, 18(12), 1221–1233. https://doi.org/10.1080/14787210.2020.1794815.

Singh, S., Kumar, V., Gill, J. P. K., Datta, S., Singh, S., et al. (2020). Herbicide Glyphosate: Toxicity and Microbial Degradation. International journal of environmental research and public health, 17(20), 7519. https://doi.org/10.3390/ijerph17207519.

Srimathi, K., & Suji, H.A. (2019). Siderophores Detection by Using Blue Agar CAS Assay Methods. International Journal of Scientific Research in Biological Sciences, 5(6), 180–85. doi: 10.26438/ijsrbs/v5i6.180185.

Srinivasulu, M., Nilanjan, P. C., Chakravarthi, B. V. S. K., Jayabaskaran, C., Jaffer, M. G., et al. (2017). Biodegradation of Monocrotophos by Bacteria Isolated from Soil. African Journal of Biotechnology, 16(9), 408–17. doi: 10.5897/AJB2015.14885.

Sun, M., Li, H., & Jaisi, D. P. (2019). Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system. Water research, 163, 114840. https://doi.org/10.1016/j.watres.2019.07.007.

Suttinun, O., Müller, R., & Luepromchai, E. (2010). Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils. Applied and environmental microbiology, 76(14), 4684–4690. https://doi.org/10.1128/AEM.03036-09.

Swangjang, K. (2022). Linkage of Sustainability to Environmental Impact Assessment Using the Concept of Ecosystem Services: Lessons from Thailand. Sustainability, 14(9), 5487. doi: 10.3390/su14095487.

Takeo, M., Yamamoto, K., Sonoyama, M., Miyanaga, K., Kanbara, N., Honda, K., Kato, D. I., & Negoro, S. (2018). Characterization of the 3-methyl-4-nitrophenol degradation pathway and genes of Pseudomonas sp. strain TSN1. Journal of bioscience and bioengineering, 126(3), 355–362. https://doi.org/10.1016/j.jbiosc.2018.04.001.

Taşkan, B., & Taşkan, E. (2021). Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere, 285, 131538. https://doi.org/10.1016/j.chemosphere.2021.131538.

Thi Mo, L., Irina, P., Natalia, S., Irina, N., Lenar, A., et al. (2022). Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms, 10(8), 1594. doi: 10.3390/microorganisms10081594.

Tyumina, E., Bazhutin, G., Kostrikina, N., Sorokin, V., Mulyukin, A., & Ivshina, I. (2023). Phenotypic and metabolic adaptations of Rhodococcus cerastii strain IEGM 1243 to separate and combined effects of diclofenac and ibuprofen. Frontiers in microbiology, 14, 1275553. https://doi.org/10.3389/fmicb.2023.1275553.

Uroz, S., Chhabra, S. R., Cámara, M., Williams, P., Oger, P., & Dessaux, Y. (2005). N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology (Reading, England), 151(Pt 10), 3313–3322. https://doi.org/10.1099/mic.0.27961-0.

Utari, P. D., Vogel, J., & Quax, W. J. (2017). Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Frontiers in microbiology, 8, 1123. https://doi.org/10.3389/ fmicb.2017.01123.

Vázquez-Boland, J. A., & Meijer, W. G. (2019). The pathogenic actinobacterium Rhodococcus equi: what's in a name?. Molecular microbiology, 112(1), 1–15. https://doi.org/10.1111/mmi.14267

Wang, X., Lu, H., Li, Q., Zhou, Y., & Zhou, J. (2022). Comparative genome and transcriptome of Rhodococcus pyridinivorans GF3 for analyzing the detoxification mechanism of anthraquinone compounds. Ecotoxicology and environmental safety, 237, 113545. https://doi.org/10.1016/j.ecoenv.2022.113545.

Ward, A. L., Reddyvari, P., Borisova, R., Shilabin, A. G., & Lampson, B. C. (2018). An inhibitory compound produced by a soil isolate of Rhodococcus has strong activity against the veterinary pathogen R. equi. PloS one, 13(12), e0209275. https://doi.org/10.1371/journal.pone.0209275.

Wrońska, N., Brzostek, A., Szewczyk, R., Soboń, A., Dziadek, J., & Lisowska, K. (2016). The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis. Molecules (Basel, Switzerland), 21(5), 598. https://doi.org/10.3390/molecules21050598.

Xiang, W., Liang, Y., Hong, S., Wang, G., You, J., Xue, Y., & Ma, Y. (2022). Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain. Archives of microbiology, 204(5), 259. https://doi.org/10.1007/s00203-022-02872-3.

Xu, B., Xue, R., Zhou, J., Wen, X., Shi, Z., et al. (2020). Characterization of Acetamiprid Biodegradation by the Microbial Consortium ACE-3 Enriched From Contaminated Soil. Frontiers in microbiology, 11, 1429. https://doi.org/10.3389/fmicb.2020.01429.

Yasin, R., Rashid, G.M.M., Ali, I., & Bugg, T.D.H (2023). Engineering of Rhodococcus jostii RHA1 for Utilisation of Carboxymethylcellulose. Heliyon 9(9), e19511. doi: 10.1016/j.heliyon.2023.e19511.

Yin, Y., Zhang, Q., & Peng, H. (2023). Retrospect and prospect of aerobic biodegradation of aniline: Overcome existing bottlenecks and follow future trends. Journal of environmental management, 330, 117133. https://doi.org/10.1016/j.jenvman.2022.117133.

Yousef, H. A., Fahmy, H.M., Arafa, F.N., Abd Allah, M.Y., Tawfik, Y.M., et al. (2023). Nanotechnology in Pest Management: Advantages, Applications, and Challenges. International Journal of Tropical Insect Science, 43(5), 1387–1399. doi: 10.1007/s42690-023-01053-z.

Yuzikhin, O. S., Gogoleva, N. E., Shaposhnikov, A. I., Konnova, T. A., Osipova, E. V., et al. (2021). Rhizosphere Bacterium Rhodococcus sp. P1Y Metabolizes Abscisic Acid to Form Dehydrovomifoliol. Biomolecules, 11(3), 345. https://doi.org/10.3390/biom11030345.

Zampolli, J., Mangiagalli, M., Vezzini, D., Lasagni, M., Ami, D., et al. (2023). Oxidative Degradation of Polyethylene by Two Novel Laccase-like Multicopper Oxidases from Rhodococcus opacus R7. Environmental Technology & Innovation, 32, 103273. doi: 10.1016/j.eti.2023.103273.

Zampolli, J., Orro, A., Manconi, A., Ami, D., Natalello, A., & Di Gennaro, P. (2021). Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Scientific reports, 11(1), 21311. https://doi.org/10.1038/s41598-021-00525-x.

Zampolli, J., Orro, A., Vezzini, D., & Di Gennaro, P. (2022). Genome-Based Exploration of Rhodococcus Species for Plastic-

Degrading Genetic Determinants Using Bioinformatic Analysis. Microorganisms, 10(9), 1846. https://doi.org/10.3390/ microorganisms10091846.

Zampolli, J., Vezzini, D., Brocca, S., & Di Gennaro, P. (2024). Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Rhodococcus bacteria. Frontiers in microbiology, 14, 1284956. https://doi.org/10.3389/ fmicb.2023.1284956.

Zhang, T., & Zhang, H. (2022). Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms, 10(2), 261. https://doi.org/10.3390/microorganisms10020261.

Downloads

Published

2024-09-25

How to Cite

Mohammed, S. A., Aman, S., & Singh, B. (2024). Unveiling the positive impacts of the genus Rhodococcus on plant and environmental health. Journal of Experimental Biology and Agricultural Sciences, 12(4), 557–572. https://doi.org/10.18006/2024.12(4).557.572

Issue

Section

REVIEW ARTICLES