Antibacterial Efficacy of Zinc oxide nanoparticles against Serratia marcescens (ATCC 43862) and Enterococcus faecalis (ATCC 29121)

Authors

  • Lee Jun Jie Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, 31900, Perak, Malaysia
  • Loh Zhe Chi Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, 31900, Perak, Malaysia
  • Ling Shing Wong Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia https://orcid.org/0000-0002-5869-0804
  • Ranjithkumar Rajamani Viyen Biotech LLP, Coimbatore, Tamil Nadu - 641 031, India https://orcid.org/0000-0001-7438-0200
  • Sinouvassane Djearamane Department of Biomedical Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, 31900, Perak, Malaysia https://orcid.org/0000-0002-8251-662X

DOI:

https://doi.org/10.18006/2022.10(5).1069.1075

Keywords:

Anti-bacterial, Zinc oxide nanoparticles, Serratia marcescens, Enterococcus faecalis, Minimum inhibitory concentration

Abstract

Zinc oxide nanoparticles (ZnO NPs) are a novel and alternative biomaterial for active biomedical applications among all metal and metallic oxide nanoparticles due to less toxicity and biocompatibility with human cells. In this study, we studied the growth curve of Serratia marcescens and Enterococcus faecalis to identify the mid-log phase of the bacterial growth to perform the exposure with ZnO NPs for investigating the antibacterial efficacy. The INT assay was used to determine the anti-bactericidal efficiency of ZnO NPs against S. marcescens and E. faecalis. The results showed that both the test bacteria attained the mid-log phase at the 5th hour. The determination of minimum inhibitory concentration (MIC) demonstrated a higher efficacy of ZnO NPs on the Gram-positive bacterium E. faecalis compared to the Gram-negative bacterium S. marcescens. The present study reports a higher susceptibility of Gram-positive bacterium over Gram-negative bacterium to the treatment of ZnO NPs.

References

Akbar, A., Sadiq, M. B., Ali, I., Niaz, M., et al. (2019). Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatalysis and Agricultural Biotechnology, 17, 36-42 DOI: https://doi.org/10.1016/j.bcab.2018.11.005

Alam, M. (2021). Photocatalytic activity of biogenic zinc oxide nanoparticles: In vitro antimicrobial, biocompatibility, and molecular docking studies. Nanotechnology Reviews,10,1079-1091 DOI: https://doi.org/10.1515/ntrev-2021-0069

Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance,11, 1645-1658. doi: 10.2147/IDR.S173867 DOI: https://doi.org/10.2147/IDR.S173867

Brazas, M.D. & Hancock, R.E. (2005). Ciprooxacin induction of a susceptibility determinant in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, 49(8), 3222-3227. DOI: https://doi.org/10.1128/AAC.49.8.3222-3227.2005

Boucher, H.W. (2020). Bad bugs, no drugs 2002-2020: progress, challenges, and call to action. Transactions of the American Clinical and Climatological Association, 131, 65-71

Dimapilis, E. A. S., Hsu, C. S., Mendoza, R. M. O, & Lu, M. C. (2017). Zinc oxide nanoparticles for water disinfection, Sustainable Environment Research, 28, 47-56. https://doi.org/ 10.1016/j.serj.2017.10.001 DOI: https://doi.org/10.1016/j.serj.2017.10.001

Demissie, M. G., Sabir, F. K., Edossa, G. D.,&Gonfa, B. A. (2020). Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of LippiaAdoensis (Koseret) and Evaluation of its Antibacterial Activity. Journal of Chemistry, 2020, 7459042. DOI: https://doi.org/10.1155/2020/7459042

Dhanasegaran, K., Djearamane, S., Liang, S. X. T., Wong, L. S., et al. (2021). Antibacterial properties of zinc oxide nanoparticles on Pseudomonas aeruginosa (ATCC 27853). Scientia Iranica, 28(6), 3806-3815.

Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis.Ecology, Environment and Conservation, 26(2),663-668.

Djearamane, S., Loh, Z. C., Lee, J. J., Wong, L. S., Rajamani, R., et al. (2022). Remedial Aspect of Zinc Oxide Nanoparticles Against Serratia marcescens and Enterococcus faecalis.Frontiers in Pharmacology, 13. DOI: https://doi.org/10.3389/fphar.2022.891304

Dzotam, J. K., Simo, I. K., Bitchagno, G., Celik, I., et al. (2018). In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3′, 4′, 7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. BMC Complementary and Alternative Medicine, 18, 1-9. DOI 10.1186/s12906-018-2084-1 DOI: https://doi.org/10.1186/s12906-018-2084-1

Gao, W., & Zhang, L. (2021). Nanomaterials arising amid antibiotic resistance. Nature Reviews Microbiology,19, 5-6 DOI: https://doi.org/10.1038/s41579-020-00469-5

Gudkov, S.V., Burmistrov, D.E., Serov, D. A., Rebezov, M. B., et al. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9:641481, 1-12, doi: 10.3389/fphy.2021.641481 DOI: https://doi.org/10.3389/fphy.2021.641481

Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K., et al. (2018). Effective Antimicrobial Activity of Green ZnO Nano Particles of Catharanthus roseus. Frontiers in Microbiology, 9:2030, 1-13, doi: 10.3389/fmicb.2018.02030. DOI: https://doi.org/10.3389/fmicb.2018.02030

Jaison, J., Siaw, F. K., Stephen, B. A., Sie, Y. L., et al. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14, 2534-2571 DOI: https://doi.org/10.1039/D1NR08144F

Kathleen, P.T.& Arthur, T. (2012). In Foundations in Microbiology: Basic Principles, 8th Edn., McGraw Hill, New York.

Lakshmipriya, T., & Gopinath, S. C. B. (2021). Introduction to nanoparticles and analytical devices. In Nanoparticles in Analytical and Medical Devices, Elsevier, 1-29. https://doi.org/ 10.1016/ B978-0-12-821163-2.00001-7 DOI: https://doi.org/10.1016/B978-0-12-821163-2.00001-7

Liang, S. X. T., Wong, L. S., Lim, Y. M, Lee, P. F., & Djearamane S. (2020). Effects of Zinc Oxide nanoparticles on Streptococcus pyogenes. South African Journal of Chemical Engineering, 34, 63-71. DOI: https://doi.org/10.1016/j.sajce.2020.05.009

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, 1310, 1-14. https://doi.org/10.3390/pathogens 10101310 DOI: https://doi.org/10.3390/pathogens10101310

Menaa, B. (2011). The Importance of Nanotechnology in Biomedical Sciences. Journal of Biotechnology and Biomaterial, 1:105e, 1-2. doi:10.4172/2155-952X.1000105e DOI: https://doi.org/10.4172/2155-952X.1000105e

Oerther, S., & Oerther, D. B. (2020). Antimicrobial resistance needs to be combated at primary levels of prevention by nurses. Nursing open,7(3), 678-679 DOI: https://doi.org/10.1002/nop2.445

Ray. S. S., & Bandyopadhyay, J. (2021). Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives. Nanotechnology Reviews,10, 728-743. DOI: https://doi.org/10.1515/ntrev-2021-0052

Roberta, C. S., Leticia, U. H., Humberto, G. R., Deise, H. B. R.et al. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36, 885-893. dx.doi.org/10.1590/0104-6632.20190362s20180027. DOI: https://doi.org/10.1590/0104-6632.20190362s20180027

Shaikh, A. J., Aman, N., & Yameen, M. A. (2020). A new methodology for simultaneous comparison and optimization between nanoparticles and their drug conjugates against various multidrug-resistant bacterial strains. Asian Biomedicine,13,149-62. DOI: https://doi.org/10.1515/abm-2019-0054

Siemer, S., Westmeier, D., Barz, M., Eckrich, J., et al. (2019). Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials,192, 551-559. DOI: https://doi.org/10.1016/j.biomaterials.2018.11.028

Silva da, B. L., Abuçafy, M. P., Manaia, E. B., Oshiro Junior, J. A., et al. (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. International Journal of Nanomedicine,14, 9395-9410 DOI: https://doi.org/10.2147/IJN.S216204

Stapleton P.D., & Taylor P.W. (2002). Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation. Science Progress, 85, 57-72. DOI: https://doi.org/10.3184/003685002783238870

Sukri, S. N. A. M., Shameli, K., Wong, M. M. T., Teow, S. Y., et al. (2019). Cytotoxicity and Antibacterial Activities of Plant-Mediated Synthesized Zinc Oxide (ZnO) Nanoparticles Using Punica Granatum (Pomegranate) Fruit Peels Extract. Journal of Molecular Structure,1189, 57. DOI: https://doi.org/10.1016/j.molstruc.2019.04.026

Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., et al. (2018). Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Frontiers in Microbiology, 9:1218, 1-10. doi: 10.3389/fmicb.2018.01218 DOI: https://doi.org/10.3389/fmicb.2018.01218

Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., et al. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics,83(5), 761-769 DOI: https://doi.org/10.1038/sj.clpt.6100400

Downloads

Published

2022-10-31

How to Cite

Jie, L. J., Chi, L. Z., Wong, L. S., Rajamani, R., & Djearamane, S. (2022). Antibacterial Efficacy of Zinc oxide nanoparticles against Serratia marcescens (ATCC 43862) and Enterococcus faecalis (ATCC 29121). Journal of Experimental Biology and Agricultural Sciences, 10(5), 1069–1075. https://doi.org/10.18006/2022.10(5).1069.1075

Issue

Section

RESEARCH ARTICLES

Categories