Antibacterial Effect of Green Synthesized Silver Nanoparticles using Cineraria maritima

Authors

DOI:

https://doi.org/10.18006/2022.10(5).1044.1052

Keywords:

Cineraria maritime, Ag NPs, SEM, FTIR, Fabric, Antibacterial

Abstract

Nanoparticles display entirely novel physicochemical characteristics for specific applications because of their exceptional size and shape. Owing to the present study, we reported biosynthesis, characterization and antibacterial properties of Cineraria maritima (Cm) assisted silver nanoparticles (Ag NPs). The surface plasmon vibration, crystalline structure, surface morphology, elemental composition, and possible functional molecules vibration of prepared Cm-Ag NPs were characterized by different instrumentation techniques. The spectrum of UV-Vis of Cm-Ag NPs showed maximum plasma intensity occurred around 425nm. XRD spectrum showed the face-centred cubic (FCC) nature of Cm-Ag NPs. The SEM image of the Cm-Ag NPs demonstrated a predominantly spherical shape with cluster formation of small particles to large particles with sizes ranging from 21.57 nm to 39.16 nm. EDS spectrum indicated the existence of Ag elements in Cm-Ag NPs. FTIR intense peaks of Cm-Ag NPs showed the different functional molecules such as phenol, alkene, aldehydes, and a carbonyl group. In addition, Cm-Ag NPs coated textile cotton fabric sample showed substantial anti-bacterial properties against a tested bacterial pathogen.

References

Awwad, A.M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4, 29. https://doi.org/10.1186/2228-5547-4-29 DOI: https://doi.org/10.1186/2228-5547-4-29

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M., (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22(2), 577-583. https://doi.org/10.1021/bp0501423 DOI: https://doi.org/10.1021/bp0501423

Chhangte, V., Samuel, L., Ayushi, B., Manickam. S., et al. (2011). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Advance, 11, 2804-2837.https://doi.org/10.1039/D0RA09941D DOI: https://doi.org/10.1039/D0RA09941D

Das, P., Dutta, T., Manna, S., Loganathan, S., & Basak, P. (2022). Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. Environmental research, 204(Pt A), 111962. https://doi.org/10.1016/j.envres.2021.111962 DOI: https://doi.org/10.1016/j.envres.2021.111962

Durgapal, S., Juyal, V., & Verma, A. (2021). In vitro antioxidant and ex vivo anti-cataract activity of ethanolic extract of Cineraria maritima: a traditional plant from Nilgiri hills. Future Journal of Pharmaceutical Science, 7, 105. https://doi.org/10.1186/s43094-021-00258-8 DOI: https://doi.org/10.1186/s43094-021-00258-8

Elavazhagan, T., & Arunachalam, K. D. (2011). Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. International Journal of Nanomedicine, 6, 1265-1278. https://doi.org/10.2147/IJN.S18347 DOI: https://doi.org/10.2147/IJN.S18347

Francis, J.O., Ali, A., Idris, Y., Ayfer, A., et al. (2020). Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: A model study as potential fungicides. Molecules, 25(11), 2682. https://doi.org/10.3390/molecules25112682 DOI: https://doi.org/10.3390/molecules25112682

Gupta, P.K., Palanisamy, S., Gopal, T., Rajamani, R., et al. (2021). Synthesis and characterization of novel Fe3O4/PVA/Eggshell hybrid nanocomposite for photodegradation and antibacterial activity. Journal of Composite Science, 5, 267. https://doi.org/ 10.3390/jcs5100267 DOI: https://doi.org/10.3390/jcs5100267

Joud, J., Wassim, A., Adawia, K., & Rawaa, Al. K. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033. https://doi.org/10.1016/j.heliyon.2021.e08033 DOI: https://doi.org/10.1016/j.heliyon.2021.e08033

Kavitha, A., Shanmugan, S., Awuchi, C. G., Kanagaraj, C., & Ravichandran, S. (2021). Synthesis and enhanced antibacterial using plant extracts with silver nanoparticles: Therapeutic application. Inorganic Chemistry Communications, 134, 109045. https://doi.org/10. 1016/j.inoche.2021.109045 DOI: https://doi.org/10.1016/j.inoche.2021.109045

Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., et al. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B: Biointerfaces, 76 (1), 50-56. https://doi.org/10.1016/j. colsurfb.2009.10.008 DOI: https://doi.org/10.1016/j.colsurfb.2009.10.008

Kumari, J., Mamta, B., & Ajeet, S. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/ 10.1016/ j.jrras.2015.10.002 DOI: https://doi.org/10.1016/j.jrras.2015.10.002

Lalitha, A., Subbaiya, R., & Ponmurugan, P. (2013). Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. International Journal of Current Microbiology and Applied Sciences, 2(6), 228-235.

Lee, H., Song, J. Y., & Kim, B.S. (2013). Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. Journal of Chemical Technology & Biotechnology, 88(11), 1971-1977. https://doi.org/10.1002/jctb.4052 DOI: https://doi.org/10.1002/jctb.4052

Liao, S., Zhang, Y., Pan, X., Zhu, F., et al. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine, 14, 1469-1487. https://doi.org/10.2147/IJN.S191340 DOI: https://doi.org/10.2147/IJN.S191340

Madhan, G., Begam, A. A., Varsha, L. V., Ranjithkumar, R., & Bharathi, D. (2021). Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. International Journal of Biological Macromolecules, 190(1), 259-269. https://doi.org/10.1016/ j.ijbiomac.2021.08.100 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.100

Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., & Kamble, S. P. (2011). Rapid biosynthesis of silver nanoparticles using Cymbopogan citrates (lemongrass) and its antimicrobial activity. Nano-Micro Letters, 3, 189-194. https://doi.org/10.1007/ BF03353671 DOI: https://doi.org/10.1007/BF03353671

Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler. M. E., et al. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery,20, 101-124. https://doi.org/10.1038 /s41573-020-0090-8 DOI: https://doi.org/10.1038/s41573-020-0090-8

Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356. https://doi.org/10.1016/j. biotechadv.2013.01.003 DOI: https://doi.org/10.1016/j.biotechadv.2013.01.003

Netra, P. N., Amit, K. K., Abhishek, K. K., Habibullah, K., et al. (2022). Anti-bacterial efficacy of bio-fabricated silver nanoparticles of aerial part of Moringa oleifera lam: Rapid green synthesis, In-Vitro and In-Silico screening. Biocatalysis and Agricultural Biotechnology, 39, 102229. https://doi.org/10.1016/ j.bcab.2021.102229 DOI: https://doi.org/10.1016/j.bcab.2021.102229

Pasupuleti, V. R., Prasad, T. N. V. K. V., Shiekh, R. A., Balam, S. K., et al. (2013). Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine, 8, 3355-3364. https://doi.org/ 10.2147/IJN.S49000 DOI: https://doi.org/10.2147/IJN.S49000

Paulkumar, K., Parvathiraja, C., Jesi Reeta, T., Gnanajobitha, G., et al. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver-based chitosan nanocomposite. International Journal of Biological Macromolecules, 189(31), 18-33. https://doi.org/10.1016/j.ijbiomac.2021.08.056 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.056

Ranjithkumar, R., Selvam, K., & Shanmugavadivu, M. (2013). Antimicrobial coated textile via biogenic synthesis silver nanoparticles. Journal Green Science Technology, 1(2), 111-113. DOI: https://doi.org/10.1166/jgst.2013.1025

Rihab, D., Badiaa, E., Hédia, H., Ghada, B. K., et al. (2021). Biosynthesized silver nanoparticles using Anagallis monelli: Evaluation of antioxidant activity, antibacterial and antifungal effects. Journal of Molecular Structure, 1251, 132076. https://doi.org/10.1016/ j.molstruc.2021.132076 DOI: https://doi.org/10.1016/j.molstruc.2021.132076

Roua, A., Hajera, T., Manal, A., Rabaan, A. A., et al. (2021). Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum. Saudi Journal of Biological Sciences, 28(4), 2102-2108. https://doi.org/10.1016/ j.sjbs.2020.12.055 DOI: https://doi.org/10.1016/j.sjbs.2020.12.055

Roy, K., Sarkar, C. K., & Ghosh, C. K. (2014). Green synthesis of silver nanoparticles using fruit extract of Malus domestica and study of its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 9(3), 1137-1147

Rufen, L., Zhenmin, C., Na, R., Yixuan, W., et al. (2019). Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. Journal of Photochemistry & Photobiology B: Biology, 199, 111593. https://doi.org/10.1016/ j.jphotobiol.2019.111593 DOI: https://doi.org/10.1016/j.jphotobiol.2019.111593

Saini, J., Kashyap, D., Batra, B., Sumit, K., et al. (2013). Microbial biotechnology green synthesis of silver nanoparticles by using neem (Azadirachta indica) and amla (Phyllanthus emblica) leaf extract. Indian Journal of Applied Research, 3(5), 209-210. DOI: https://doi.org/10.15373/2249555X/MAY2013/63

Santhoshkumar, S., & Nagarajan, N. (2014). Biological synthesis of silver nanoparticles of Adiantum capillus-veneris L. and their evaluation of antibacterial activity against human pathogenic bacteria. International Journal of Pharmaceutical Sciences and Research, 5(12), 5511-5518. http://dx.doi.org/10.13040/ IJPSR.0975-8232.5(12).5511-18

Selvaraj, K., Ranjana, C., & Chiranjib, C. (2014). A green chemistry approach for the synthesis and characterization of bioactive gold nanoparticles using Azolla microphylla methanol extract. Frontiers of Materials Science, 8(2), 123-135, https://doi.org/10.1007/s11706-014-0246-8 DOI: https://doi.org/10.1007/s11706-014-0246-8

Shanmugavadivu, M., Selvam, K., & Ranjithkumar, R. (2014). Green synthesis of silver nanoparticles from pomegranate peel extract and its antimicrobial activity. American Journal of Advance Drug Deliver, 2(2), 174-182.

Sharmila, C., Prabhavathi, V., Dinesh, B., Ranjithkumar, R., & Chandarshekar, B. (2019). Shape controlled synthesis of dextran sulfate stabilized silver nanoparticles: Biocompatibility and anticancer activity. Material Research Express, 6(4), 1-7.https://doi.org/10.1088/2053-1591/aafefc DOI: https://doi.org/10.1088/2053-1591/aafefc

Sharmila, C., Ranjithkumar, R., & Chandarshekar, B. (2018). Psidium guajava: a novel plant in the synthesis of silver nanoparticles for biomedical applications. Asian Journal of Pharmaceutical and Clinical Research, 11(1), 341-345. https://doi.org/10.22159/ ajpcr.2018.v11i1.21999 DOI: https://doi.org/10.22159/ajpcr.2017.v11i1.21999

Tamulya, C., Hazarika, M., Borah, S. C., Das, M. R., & Boruah, M. P. (2013). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach. Colloids and Surfaces B Biointerfaces, 102, 627-634. https://doi.org/10.1016/j. colsurfb.2012.09.007 DOI: https://doi.org/10.1016/j.colsurfb.2012.09.007

Urnukhsaikhan, E., Bold, B. E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific reports, 11(1), 21047. https://doi.org/10.1038/ s41598-021-00520-2 DOI: https://doi.org/10.1038/s41598-021-00520-2

Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., et al. (2014). Degradation of methylene blue using biologically

synthesized silver nanoparticles. Bioinorganic Chemistry and Application, 2014, 742346. https://doi.org/10.1155/2014/742346 DOI: https://doi.org/10.1155/2014/742346

Vijaya Raj, D., Anarkali, J., Rajathi, K., & Sridhar, S. (2012). Green synthesis and characterization of silver nanoparticles from the leaf extract of Aristolochia bracteata and its antimicrobial activity. International Journal of Nanomaterials and Biostructures, 2(2), 11-15. https://doi.org/10.1002/bab.2235 DOI: https://doi.org/10.1002/bab.2235

Downloads

Published

2022-10-31

How to Cite

Duraisamy, M., S, S., R. T, N., Rajamani, R., Wong, L. S., Djearamane, S., & T.S, M. S. (2022). Antibacterial Effect of Green Synthesized Silver Nanoparticles using Cineraria maritima. Journal of Experimental Biology and Agricultural Sciences, 10(5), 1044–1052. https://doi.org/10.18006/2022.10(5).1044.1052

Issue

Section

RESEARCH ARTICLES

Categories