Heavy Metal Tolerance profile among Bacterial species Isolated from Hydrocarbon polluted sites and their mobile genetic elements

Authors

  • Antai Sylvester Peter Department of Microbiology, University of Calabar, Calabar, Cross River State, Nigeria
  • Agbor Reagan Bessong Department of Genetics and Biotechnology, University of Calabar, Calabar, Cross River State, Nigeria
  • Iwatt Godwin Dickson Department of Microbiology, University of Calabar, Calabar, Cross River State, Nigeria
  • Ubi Stanley Emmanuel Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State, Nigeria

DOI:

https://doi.org/10.18006/2023.11(1).158.170

Keywords:

Plasmid, Bacterial, Polluted, Soil, DNA, Environment

Abstract

This present study evaluated the plasmid incidence in bacteria and their genetic elements in heavy metals tolerant-antibiotics resistant microbes isolated from petroleum hydrocarbon polluted sites. The plasmid isolation was carried out using the fermentas Genejet plasmid miniprep kit (Thermofisher Scientific Inc, USA). Screening for class 1, 2, and 3 integrons, incompatibility group P testing, plasmid replicon typing, plasmid restriction analysis, and other analysis was performed using standard laboratory procedures. Plasmid incidences were higher among multiple heavy metal-tolerant bacterial species from hydrocarbon-polluted sites than those from the pristine site. Further, Class 1 integron incidence was significantly higher among the integrons in heavy metal tolerant bacterial isolates isolated from the polluted ecosystems than those from pristine ecosystems. Plasmid replicon type of bacteria with multiple heavy metal tolerance and antibiotics resistance indexes revealed that IncN plasmid replicon type carrying class 1 integron. This encodes resistance to sulphamethazole/trimethoprim, ampicillin, and tolerance to Cd, Ni, and Cu in Klebsiella pneumoniae isolate from petroleum-polluted soil. This is the first report of IncN plasmid in environmental bacteria in Nigeria, particularly from petroleum polluted environment. The conjugation experiment confirmed the possible transferability of antibiotic resistance determinants among isolates in polluted ecosystems. From the results of this study, it can be concluded that petroleum hydrocarbon pollution vis-a-vis heavy metal selective pressure with the abundance of mobile genetic elements amongst isolates from polluted ecosystems could contribute to the dispersing of antibiotic resistance genes, thus posing a serious public health concern.

References

Azarbad, H., Niklińska, M., Laskowski, R., van Straalen, N. M., van Gestel, C. A., Zhou, J., He, Z., Wen, C., & Röling, W. F. (2015). Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS microbiology ecology, 91(1), 1–11. https://doi.org/10.1093/femsec/ fiu003. DOI: https://doi.org/10.1093/femsec/fiu003

Bahl, M. I., Burmølle, M., Meisner, A., Hansen, L. H., & Sørensen, S. J. (2009). All IncP-1 plasmid subgroups, including the novel epsilon subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid, 62(2), 134–139. https://doi.org/10.1016/j.plasmid.2009.05.004. DOI: https://doi.org/10.1016/j.plasmid.2009.05.004

Berg, J., Tom-Petersen, A., & Nybroe, O. (2005). Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in applied microbiology, 40(2), 146–151. https://doi.org/10.1111/j.1472-765X.2004.01650.x. DOI: https://doi.org/10.1111/j.1472-765X.2004.01650.x

Bortolaia, V., Guardabassi, L., Trevisani, M., Bisgaard, M., Venturi, L., & Bojesen, A. M. (2010). High diversity of extended-spectrum beta-lactamases in Escherichia coli isolates from Italian broiler flocks. Antimicrobial agents and chemotherapy, 54(4), 1623–1626. https://doi.org/10.1128/AAC.01361-09. DOI: https://doi.org/10.1128/AAC.01361-09

Bratu, S., Landman, D., Martin, D. A., Georgescu, C., & Quale, J. (2008). Correlation of antimicrobial resistance with beta-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrobial agents and chemotherapy, 52(9), 2999–3005. https://doi.org/10.1128/AAC.01684-07. DOI: https://doi.org/10.1128/AAC.01684-07

Carattoli A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrobial agents and chemotherapy, 53(6), 2227–2238. https://doi.org/10.1128/AAC.01707-08. DOI: https://doi.org/10.1128/AAC.01707-08

Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. The Science of the total environment, 512-513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.025

Chen, Y., Jiang, Y., Huang, H., Mou, L., Ru, J., Zhao, J., & Xiao, S. (2018). Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. The Science of the total environment, 637-638, 1400–1412. https://doi.org/10.1016/ j.scitotenv.2018.05.109. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.109

Cullik, A., Pfeifer, Y., Prager, R., von Baum, H., & Witte, W. (2010) A novel IS26 structure surrounds blaCTX-M genes in different plasmids from German clinical Escherichia coli isolates. Journal of Medical Microbiology, 59, 580-587. DOI: https://doi.org/10.1099/jmm.0.016188-0

Diestra, K., Juan, C., Curiao, T., Moyá, B., Miró, E., Oteo, J., Coque, T. M., Pérez-Vázquez, M., Campos, J., Cantón, R., Oliver, A., Navarro, F., & Red Española de Investigación en Patología Infecciosa (REIPI), Spain (2009). Characterization of plasmids encoding blaESBL and surrounding genes in Spanish clinical isolates of Escherichia coli and Klebsiella pneumoniae. The Journal of antimicrobial chemotherapy, 63(1), 60–66. https://doi.org/10.1093/jac/dkn453. DOI: https://doi.org/10.1093/jac/dkn453

Ekpo I.A., Agbor, R.B., Ekanem A., Ikpeme E.V., Udensi U., & Effiong B.E (2012). Effect of crude oil on the physicochemical properties of sandy loam soil amended with cocoa pod husks and plantain peels. Archives of Applied Science Research, 4(3), 1553-1558.

Epelde, L., Lanzén, A., Blanco, F., Urich, T., & Garbisu, C. (2015). Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS microbiology ecology, 91(1), 1–11. https://doi.org/ 10.1093/femsec/fiu007. DOI: https://doi.org/10.1093/femsec/fiu007

Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature reviews. Microbiology, 3(9), 722–732. https://doi.org/10.1038/nrmicro1235. DOI: https://doi.org/10.1038/nrmicro1235

Gati, G., Pop, C., Brudaşcă, F., Gurzău, A. E., & Spînu, M. (2016). The ecological risk of heavy metals in sediment from the Danube Delta. Ecotoxicology (London, England), 25(4), 688–696. https://doi.org/10.1007/s10646-016-1627-9 DOI: https://doi.org/10.1007/s10646-016-1627-9

Gootz, T. D., Lescoe, M. K., Dib-Hajj, F., Dougherty, B. A., He, W., Della-Latta, P., & Huard, R. C. (2009). Genetic organization of transposase regions surrounding blaKPC carbapenemase genes on plasmids from Klebsiella strains isolated in a New York City hospital. Antimicrobial agents and chemotherapy, 53(5), 1998–2004. https://doi.org/10.1128/AAC.01355-08. DOI: https://doi.org/10.1128/AAC.01355-08

Hu, H. W., Wang, J. T., Li, J., Shi, X. Z., Ma, Y. B., Chen, D., & He, J. Z. (2017). Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environmental science & technology, 51(2), 790–800. https://doi.org/10.1021/acs.est.6b03383 DOI: https://doi.org/10.1021/acs.est.6b03383

Jan, N., Meshram, S.U., & Kulkarni, A. (2009). Plasmid profile analysis of multidrug resistant E. coli isolated from UTI patients of Nagpur City, India. Romanian Biotechnological Letters, 14, 4635-4640..

Johnson, T. J., Wannemuehler, Y. M., Johnson, S. J., Logue, C. M., White, D. G., Doetkott, C., & Nolan, L. K. (2007). Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Applied and environmental microbiology, 73(6), 1976–1983. https://doi.org/10.1128/AEM.02171-06. DOI: https://doi.org/10.1128/AEM.02171-06

Kado C. I. (1998). Origin and evolution of plasmids. Antonie van Leeuwenhoek, 73(1), 117–126. https://doi.org/10.1023/ a:1000652513822. DOI: https://doi.org/10.1023/A:1000652513822

Knapp, C. W., Callan, A. C., Aitken, B., Shearn, R., Koenders, A., & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental science and pollution research international, 24(3), 2484–2494. https://doi.org/10.1007/s11356-016-7997-y. DOI: https://doi.org/10.1007/s11356-016-7997-y

Lane, D. J. (1991) 16S/23S rRNA sequencing. In: E. Stackembrandt, M. Goodfellow (eds) Nucleid acid techniques in bacterial systematics (pp 15-176). New York: John Wiley & Sons.

Lee, S.W., Najiah, M., Wendy, W., Zahrol, A., & Nadirah, M. (2009). Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery. Agricultural Sciences in China, 8, 740-745. DOI: https://doi.org/10.1016/S1671-2927(08)60273-4

Levesque E.M., Massey P., Olsen K. A. G., Plez B., Josselin E., Maeder A., & Meynet G. (2005). The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought. The Astrophysical Journal, 628(2): 973. DOI: https://doi.org/10.1086/430901

Li, J., Xin, Z., Zhang, Y., Chen, J., Yan, J., Li, H., & Hu, H. (2017). Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Applied Soil Ecology, 121, 193-200. DOI: https://doi.org/10.1016/j.apsoil.2017.10.007

Liu, J., Li, C., Jing, J., Zhao, P., Luo, Z., Cao, M., Ma, Z., Jia, T., & Chai, B. (2018). Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water research, 133, 99–109. https://doi.org/10.1016/j.watres.2018.01.014. DOI: https://doi.org/10.1016/j.watres.2018.01.014

Manni, R., Terzaghi, M., & Repetto, A. (2008). The FLEP scale in diagnosing nocturnal frontal lobe epilepsy, NREM and REM parasomnias: data from a tertiary sleep and epilepsy unit. Epilepsia, 49(9), 1581–1585. https://doi.org/10.1111/j.1528-1167.2008.01602.x. DOI: https://doi.org/10.1111/j.1528-1167.2008.01602.x

Moura, G., Pinheiro, M., Arrais, J., Gomes, A. C., Carreto, L., Freitas, A., Oliveira, J. L., & Santos, M. A. (2007). Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PloS one, 2(9), e847. https://doi.org/10.1371/journal.pone.0000847. DOI: https://doi.org/10.1371/journal.pone.0000847

Ndeddy Aka, R.J., & Babalola, O. (2017). Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediation Journal, 21, 1 - 19.. 10.1080/10889868.2017.1282933 DOI: https://doi.org/10.1080/10889868.2017.1282933

Nemec, A., Maixnerová, M., van der Reijden, T. J., van den Broek, P. J., & Dijkshoorn, L. (2007). Relationship between the AdeABC efflux system gene content, netilmicin susceptibility and multidrug resistance in a genotypically diverse collection of Acinetobacter baumannii strains. The Journal of antimicrobial chemotherapy, 60(3), 483–489. https://doi.org/10.1093/jac/dkm231. DOI: https://doi.org/10.1093/jac/dkm231

Nemergut, D.R., Martín, A.P., & Schmidt, S.K. (2004). Integron Diversity in Heavy-Metal-Contaminated Mine Tailings and Inferences about Integron Evolution. Applied and Environmental Microbiology, 70, 1160 - 1168. DOI: https://doi.org/10.1128/AEM.70.2.1160-1168.2004

Novais, A., Cantón, R., Moreira, R., Peixe, L., Baquero, F., & Coque, T. M. (2007). Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -3, and -32) plasmids. Antimicrobial agents and chemotherapy, 51(2), 796–799. https://doi.org/10.1128/ AAC.01070-06. DOI: https://doi.org/10.1128/AAC.01070-06

Poirel, L., Dortet, L., Bernabeu, S., & Nordmann, P. (2011). Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrobial agents and chemotherapy, 55(11), 5403–5407. https://doi.org/10.1128/AAC.00585-11. DOI: https://doi.org/10.1128/AAC.00585-11

Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A., & Kurban, M. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. The Science of the total environment, 642, 864–878. https://doi.org/10.1016/j.scitotenv.2018.06.034 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.034

Shen, P., Jiang, Y., Zhou, Z., Zhang, J., Yu, Y., & Li, L. (2008). Complete nucleotide sequence of pKP96, a 67 850 bp multiresistance plasmid encoding qnrA1, aac(6')-Ib-cr and blaCTX-M-24 from Klebsiella pneumoniae. The Journal of antimicrobial chemotherapy, 62 (6), 1252-1256. DOI: https://doi.org/10.1093/jac/dkn397

Su, X., Chen, J., Mizushima, T., Kuroda, T., & Tsuchiya, T. (2005). AbeM, an H+-Coupled Acinetobacter baumannii

Multidrug Efflux Pump Belonging to the MATE Family of Transporters. Antimicrobial Agents and Chemotherapy, 49, 4362 - 4364.

Tan, L., Li, L., Ashbolt, N., Wang, X., Cui, Y., Zhu, X., Xu, Y., Yang, Y., Mao, D., & Luo, Y. (2018). Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. The Science of the total environment, 621, 1176–1184. https://doi.org/10.1016/j.scitotenv.2017.10.110. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.110

Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic acids research, 19(24), 6823–6831. https://doi.org/10.1093/nar/19.24.6823. DOI: https://doi.org/10.1093/nar/19.24.6823

Downloads

Published

2023-02-28

How to Cite

Peter, A. S., Bessong, A. R., Dickson, I. G., & Emmanuel, U. S. (2023). Heavy Metal Tolerance profile among Bacterial species Isolated from Hydrocarbon polluted sites and their mobile genetic elements. Journal of Experimental Biology and Agricultural Sciences, 11(1), 158–170. https://doi.org/10.18006/2023.11(1).158.170

Issue

Section

RESEARCH ARTICLES

Categories