Peruvian plant resources as potential natural controllers of adult Aedes aegypti

Authors

  • Ofelia Magdalena Córdova Paz Soldán Grupo de Investigación Biomedicina Molecular y Enfermedades Metaxénicas. Departamento de Ciencias. Universidad Privada Antenor Orrego. Perú
  • Franklin Vargas Vásquez Instituto de Microbiología y Parasitología Tropical. Universidad Nacional de Trujillo. Perú https://orcid.org/0000-0002-5054-2022
  • Edmundo Venegas Casanova Facultad de Farmacia, Universidad Nacional de Trujillo, Perú
  • Ricardo Diego Duarte Galhardo de Albuquerque Laboratorio de Tecnologia em Produtos Naturais, Faculdade de Farmacia, Universidade Federal Fluminense, Brasil

DOI:

https://doi.org/10.18006/2023.11(1).119.131

Keywords:

Natural pesticides, Aedes aegypti, Cymbopogum citrates, Rosmarinus officinalis, Minthostachys mollis, Biological control

Abstract

Aedes aegypti is an important vector of tropical diseases like Dengue, Zika, Chikungunya, and Yellow Fever and affects mainly countries located in tropical and subtropical zones, including Peru. Synthetic insecticides are used to control this vector, but they also cause a residual effect on the environment, whereas the vector has developed resistance to these compounds, so there is a current need to search for new control alternatives, such as the use of abundant natural resources. Therefore, this work aimed to evaluate the biocidal activity of extracts and oils from Cymbopogum citratus, Rosmarinus officinalis, and Minthostachys mollis on adult Aedes aegypti, as well as to evaluate their quality parameters. Furthermore, the chemical profile of the three species was assessed by ultra-high-performance liquid chromatography coupled with mass spectrometry (LC-MS/MS). The results showed that the aqueous/ethanolic extracts and the essential oils from the three evaluated species presented a biocidal effect on adult A.  aegypti. Regarding the analysis of the chemical profile, 15 compounds were identified in R. officinalis, while 29 compounds were identified from C. citratus and 30 compounds from M. mollis. Moreover, the extracts and oils presented quality parameters according to standards. In conclusion, the biocidal potential of the C. citratus, R. officinalis, and M. mollis on A. aegypti adults was reported so that they can be seen as a real natural alternative for the control of tropical diseases transmitted by this vector so that plant products are more eco-friendly and subject to lower resistance by target organisms.

References

Achour, M., Mateos, R., Ben Fredj, M., Mitraoui, A., Bravo, L., & Saguem, S. (2017). A Comprehensive Characterisation of Rosemary tea Obtained from Rosmarinus officinalis L. Collected in a sub-Humid Area of Tunisia. Phytochemical Analysis, 29, 87-100. DOI: https://doi.org/10.1002/pca.2717

Agarwal, M., Walia, S., Dhingra, S., & Khambay, B.P. (2001). Activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Management Science, 57, 289-300. DOI: https://doi.org/10.1002/ps.263

Alegre, A. (2016). Efecto tóxico del extracto acuoso, etanólico y hexánico de Minthostachys mollis, Annona muricata, Lupinus mutabilis y Chenopodium quinoas obre Tetranychus urticae (Trombidiformes: Tetranychidae) y Chrysoperla externa (Neuroptera: Chrysopidae). Graduation Thesis, Universidad Ricardo Palma, Peru. DOI: https://doi.org/10.4067/S0719-38902017005000705

Andrade, J.M, Faustino, C., Garcia, C., Ladeiras,D., Reis, C.P., & Rijo, P. (2018). Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Science, 4, FSO283. DOI: https://doi.org/10.4155/fsoa-2017-0124

Azeem, M., Zaman, T., Tahir, M., Haris, A., Iqbal, Z., & Binyameen, M. (2019). Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Industrial Crops and Products, 140, 111609. DOI: https://doi.org/10.1016/j.indcrop.2019.111609

Bhaskar, K., Sassykova, L.R., Prabhahar, M., ShebhaPercis, E., Nalini, A., Jenish, T., Jayarajan, J., & Sendilvelan, S. (2021). Analysis of Cymbopogon citratus, Pinus sylvestris and Syzygium cumini biodiesel feed stocks for its fatty acid composition. Materials Today: Proceedings, 45, 5970-5977. DOI: https://doi.org/10.1016/j.matpr.2020.09.254

Bhatt, S., Gething, P., Brady, O., Messina, J., Farlow, A., & Moyes, C. (2013). The global distribution and burden of dengue. Nature, 496, 504-507. DOI: https://doi.org/10.1038/nature12060

British Pharmacopoeia. (2022). London: British Medicinal Herbal Association.

Brogdon, W., & Chan A. (1998). Instrucciones para la Evaluación de la Resistencia a Insecticida en Vectores mediante del Ensayo Biológico de la Botella de los CDC. Atlanta: CDC. Avaliable in: https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_es.pdf

Cabezas, C., Fiestas, V., García, M., Palomino, M., Mamani, E., & Donaires, F. (2015). Dengue en el Perú: A un cuarto de Siglo de su reemergencia. Revista Peruana de Medicina Experimental y Salud Pública, 32, 146-156. DOI: https://doi.org/10.17843/rpmesp.2015.321.1587

Chala, B., & Hamde, F. (2021). Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Frontiers in Public Health, 9, 715759. DOI: https://doi.org/10.3389/fpubh.2021.715759

Dawkar, V., Chikate, Y., Lomate, P., Dholakia, B., Gupta, V., & Giri, A. (2013). Molecular insights into resistance mechanisms of Lepidopteran insect pests against toxicants. Journal of Proteome Research, 12, 4727–4737. DOI: https://doi.org/10.1021/pr400642p

Demirak, M.S.S., & Canpolat, E. (2022). Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects, 13, 162. DOI: https://doi.org/10.3390/insects13020162

Dias, C.N., & Moraes, D.F.C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitology Research, 113, 565-592. DOI: https://doi.org/10.1007/s00436-013-3687-6

Duarte, J.L., Amado, J.R.R., Oliveira, A.E.M.F.M., Cruz,R.A.S, Ferreira, A.M., Souto, R.N.P., Falcão, D.Q., Carvalho, J.C.T., & Fernandes, C.P. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Brazilian Journal of Pharmacognosy, 25, 189-192. DOI: https://doi.org/10.1016/j.bjp.2015.02.010

Dueñas-López, M.A. (2022). Aedes aegypti (yellow fever mosquito). CABI Compendium. Avaliable in: https://www.cabidigitallibrary.org/doi/pdf/10.1079/cabicompendium.94883 DOI: https://doi.org/10.1079/cabicompendium.94883

Ekpenyong, C.E., Akpan, E.E., & Daniel, N.E. (2014). Phytochemical Constituents, Therapeutic Applications and Toxicological Profile of Cymbopogon citratus Stapf (DC) Leaf Extract. Journal of Pharmacognosy and Phytochemistry, 3,133-141.

Faraone, I., Russo, D., Genovese, S., Milella, L., Monne, M., Epifano, F., & Fiorito, S. (2021). Screening of in vitro and in silico α-amylase, α-glucosidase, and lipase inhibitory activity of oxyprenylated natural compounds and semisynthetic derivatives. Phytochemistry, 187, 112781. DOI: https://doi.org/10.1016/j.phytochem.2021.112781

Gbenou, J.D., Ahounou, J.F., Akakpo, H.B., Laleye, A., Yayi, E., Gbaguidi, F. (2013). Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Molecular Biology Reports, 40, 1127-1134. DOI: https://doi.org/10.1007/s11033-012-2155-1

Gillij, Y.G., Gleiser, R.M., & Zygadlo, J.A. (2008). Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresource Technology, 99, 2507-2515. DOI: https://doi.org/10.1016/j.biortech.2007.04.066

González-Coloma, A., López-Balboa, G., Santana, O., Reina, M., & Fraga, B.M. (2011). Triterpene-based plant defenses. Phytochemistry Reviews, 10, 245–260. DOI: https://doi.org/10.1007/s11101-010-9187-8

Isman, M.B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603-608. DOI: https://doi.org/10.1016/S0261-2194(00)00079-X

Isman, M.B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Reviews in Entomology, 51, 45–66. DOI: https://doi.org/10.1146/annurev.ento.51.110104.151146

Isman, M.B. (2020). Bioinsecticides based on plant essential oils. Zeitschrift für Naturforschung C, 75, 7-8. DOI: https://doi.org/10.1515/znc-2020-0038

Jankowska, M., Rogalska, J., Wyszkowska, J., & Stankiewicz, M. (2018). Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules, 23, 34. DOI: https://doi.org/10.3390/molecules23010034

Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, & N., Shaaya, E. (2002). Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Management Science, 58, 1101-1106. DOI: https://doi.org/10.1002/ps.548

Lazcano, J.A., Rodríguez, M.M., San Martín, J.L., Romero, J.E., & Montoya, R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de El Salvador. Revista Panamericana de Salud Pública, 26, 229–234. DOI: https://doi.org/10.1590/S1020-49892009000900007

Linares V. (2020). Consideraciones para el uso y estudio de la “muña” peruana Minthostachys mollis (Benth.) Griseb y Minthostachys setosa(Briq.) Epling. Ethnobotany Research and Applications, 19, 1-9. DOI: https://doi.org/10.32859/era.19.29.1-9

López L. (2008). El romero. Planta aromática con efectosantioxidantes. Revista Offarm, 27, 60-63.

Maazoun, A.M., Ben Hiel, T., Hamdi, S.H., Belhadj, F., Ben Jemâa, J.M., & Marzouki, M.N. (2017). Screening for insecticidal potential and acetylcholinesterase activity inhibition of Urginea maritima bulbs extract for the control of Sitophilus oryzae (L.). Journal of Asia-Pacific Entomology, 20, 752-760. DOI: https://doi.org/10.1016/j.aspen.2017.04.004

Mena, P., Cirilini, M., Tassotti, M., Herrlinger, K.A, Dall’asta, C., & Del Rio, D. (2020). Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules, 21, 1576. DOI: https://doi.org/10.3390/molecules21111576

MINSA. (2015). Norma técnica de salud para la implementación de la vigilancia y control del Aedes aegypti, vector del dengue y la fiebre de chikungunya y la prevención del ingreso del Aedes albopictus en el territorio nacional. Avaliable in: http://www.datosabiertos.gob.pe/sites/default/files/recursos/2017/09/NTS %201162015%20%20VIGILANCIA%20Y%20CONTROL %20DEL%20AEDES%20AEGY PTI.pdf.

Miranda, M. (2002). Métodos de análisis de drogas y extractos. Instituto de Farmacia y Alimentos, Universidad de la Habana, Cuba.

Miranda, M., & Cuellar, A. (2002). Manual de Prácticas de Laboratorio: Farmacognosia y Productos Naturales. Instituto de Farmacia y Alimentos, Habana. 1-68.

Mitchell, M.J., Keogh, D.P., Crooks, J.R., & Smith, S.L. (1993). Effects of plant flavonoids and other allelochemicals on insect cytochrome P-450 dependent steroid hydroxylase activity. Insect Biochemistry and Molecular Biology, 23, 65-71. DOI: https://doi.org/10.1016/0965-1748(93)90083-5

Oladeji, O.S., Adelowo, F.E., Ayodele, D.T., & Odelade, K.A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. DOI: https://doi.org/10.1016/j.sciaf.2019.e00137

Orbegozo, H., & Rodríguez, K. (2018). Características farmacognósticas y rendimiento del aceite esencial de las hojas de Minthostachys mollis “muña”. PhD Thesis, Universidad Nacional de Trujillo, Peru. 51 p.

Organización Panamericana de Salud (OPS). (2019). Otras enfermedades transmitidas por vectores. Avaliable in: https://www.paho.org/per/index.php?option=com_content&view=article&id=4085:otras-enfermedades-transmitidas-por-vectores& Itemid=1097

Pereira, L.E.C., Ferreira, E.M., Picinato, M.A.C., Mathias, L.A., Arcêncio, R.A., Barbosa, K.F.D., & Ferraudo, A.S. (2022). Community knowledge on dengue in territories under risk in the state of São Paulo. Arquivos do Instituto Biológico, 89, 1-9. DOI: https://doi.org/10.1590/1808-1657000042021

Pessoa, L.Z.S., Duarte, J.L., Ferreira, R.M.A., Oliveira, A.E.M.F.M., Cruz, R.A.S., Faustino, S.M.M., Carvalho, J.C.T., Fernandes,C.P., Souto, R.N.P., & Araújo, R.S. (2018). Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae. Brazilian Journal of Pharmacognosy, 28, 618-625. DOI: https://doi.org/10.1016/j.bjp.2018.07.003

Pino, O., Sánchez, Y., & Rojas, M.M. (2013). Plant secondary metabolites as alternatives in pest management. II: An overview of their potential in Cuba. Revista de Protección Vegetal, 28, 95-108.

Prajapati, V., Tripathi, A.K., Aggarwal, K.K., & Khanuja, S.P.S. (2005). Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresources Technology, 96, 1749- 1757. DOI: https://doi.org/10.1016/j.biortech.2005.01.007

Rocha, L.M., Rodrigues, R.D.S., Guimarães, P.H.V., & Gonsalves, J.K.M.C. (2022). Larvicide potential of essential oils from Brazilian plants against Aedes aegypti. Research, Society and Development, 11, e53211226140. DOI: https://doi.org/10.33448/rsd-v11i2.26140

Rodríguez, W., Castro, L., Sánchez, Y., Gómez, J.E., & Correa, M. (2006). Composición química del aceite esencial de las hojas de Cymbopogon nardus y Cymbopogon citratus. Momentos de Ciencia, 3, 44-50.

Soonwera, M., & Phasomkusolsil, S. (2016). Effect of Cymbopogon citrates (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitology Research, 115, 1691-1703. DOI: https://doi.org/10.1007/s00436-016-4910-z

Soonwera, M., & Sittichok, S. (2020). Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environmental Science and Pollution Research International, 27, 20201-20214. DOI: https://doi.org/10.1007/s11356-020-08529-2

Soto-Ortiz, R., Vega-Marrero, G., & Tamajón-Navarro, A.L. (2002). Instructivo técnico del cultivo de Cymbopogon citratus (D.C) Stapf (caña santa). Revista Cubana de Plantas Medicinales, 7(2), 55-68.

Soto, M., & Rosales, M. (2016). Efecto del solvente y de la relación masa/solvente sobre la extracción de compuestos fenólicos y la capacidad antioxidante de extractos de corteza de Pinus durangensis y Quercus sideroxyla. Maderas: Ciencia & Tecnología, 18, 701-714.

Sousa, R., Figueirinha, A., Batista, M.T., & Pina, M.E. (2021). Formulation Effects in the Antioxidant Activity of Extract from the Leaves of Cymbopogon citratus (DC) Stapf. Molecules, 26, 4518. DOI: https://doi.org/10.3390/molecules26154518

Van Baren, C.M., Di Leo Lira, P., Elechosa, M.A., Molina, A.M., Juárez, M.A., & Martínez, A. (2014). New insights into the chemical biodiversity of Minthostachys mollis in Argentina. Biochemical Systematics and Ecology, 57, 374-383. DOI: https://doi.org/10.1016/j.bse.2014.09.004

Vera, S.S., Zambrano, D.F., Méndez-Sanchez, S.C., Rodríguez-Sanabria, F., Stashenko, E.E., & Duque Luna, J.E. (2014). Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113, 2647-2654. DOI: https://doi.org/10.1007/s00436-014-3917-6

Villar, A. (1999). Farmacognosia General. Síntesis S.A. Madrid, Spain.

Vincent, J., & Wegst, U. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33, 187-199. DOI: https://doi.org/10.1016/j.asd.2004.05.006

Wagner, H., & Bladt, S. (2004). Plant Drug Analysis: a thin layer chromatography atlas, 2ndedn: Berlin: Springer, Berlin, Germany.

Wahyuni, D. (2012). Larvicidal Activity of Essential Oils of Piper betle from the Indonesian Plants against Aedes Aegypti L. Journal of Applied Environment Biological Science, 2, 6.

Waliwitiya, R., Kennedy, C.J., & Lowenberger, C.A. (2009). Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Management Science, 65, 241-248. DOI: https://doi.org/10.1002/ps.1675

World Health Organization (WHO). (2009). Dengue: guidelines for diagnosis, treatment, prevention, and control. New Edn: Geneva: World Health Organization.

World Health Organization (WHO). (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations. New Edn: Geneva: World Health Organization.World Health Organization (WHO). (2020). Vector-borne diseases. New Edn: Geneva: World Health Organization.

Downloads

Published

2023-02-28

How to Cite

Córdova Paz Soldán, O. M., Vásquez, F. V., Casanova, E. V., & Galhardo de Albuquerque, R. D. D. (2023). Peruvian plant resources as potential natural controllers of adult Aedes aegypti. Journal of Experimental Biology and Agricultural Sciences, 11(1), 119–131. https://doi.org/10.18006/2023.11(1).119.131

Issue

Section

RESEARCH ARTICLES

Categories