Chemotaxonomic Significance and Environmental Implications of the Phytochemical Constituents of four Mussaenda L. (Rubiaceae) taxa in Nigeria
DOI:
https://doi.org/10.18006/2022.10(4).861.869Keywords:
Chemotaxonomy, Histochemistry, Phytochemicals, Mussaenda L., RubiaceaeAbstract
This work investigated the phytoconstituents of some Mussaenda taxa (Rubiaceae) collected from Nsukka (Derived Savanna) and Uyo (Tropical Rainforest) ecological zones of Nigeria to establish their contribution as possible taxonomic and environmental monitoring markers. Fresh leaf samples used in this study were collected from plants of the same age, air-dried, and made into powder for further use. Histochemical and phytochemical tests were carried out by following the standard procedures. Results of the comparative phytochemical screening revealed the presence of flavonoids, alkaloids, glycosides, phenols, hydrogen cyanide, reducing sugars, soluble carbohydrates, saponins, steroids, terpenoids, and tannins in varying proportions. Results of the phytochemical constitute analysis revealed the presence of the cystoliths from the M. elegans (MEL) and M. erythrophylla (MER) which were absent in Mussaenda “ Doña Aurora” (MDA) and Mussaenda “Doña Luz”(MDL). Further, the presence of the Raphides was unique to MEL while Gum and mucilage were reported only in MDA. Quantitatively, MEL had the highest value of terpenoids (650.88 mg/100g) while MDA had the highest values of phenols (899.27 mg/100g), alkaloids (311.01 mg/100g), reducing sugars (967.35 mg/100g), steroids (2.89 mg/100g), soluble carbohydrates (27.68 mg/100g) and tannins (393.16 mg/100g), and MDL was richest in glucosides (339.64 mg/100g), flavonoids (69.34 mg/100g) and hydrogen cyanides (1.34 mg/100g). The cluster analysis based on obtained phytochemical data revealed three (3) distinct clusters with MEL in cluster 1; MDA and MDL in cluster 2 while cluster 3 had MER. The evolutionary closeness of the two infraspecific and exotic species (MDA and MDL) were confirmed and their taxonomic relationship with the indigenous infrageneric taxa (MEL and MER) was established. The results also highlight the opportunity of employing plant metabolomics in ecological studies and environmental monitoring.
References
Akiyama, H., Fujii, K., Yamasaki, O., Oono, T., & Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48 (4), 487 – 491. DOI: https://doi.org/10.1093/jac/48.4.487
Asl, M. N., & Hossein, H. (2008). Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytotherapy Research,22 (6),709 – 724. DOI: https://doi.org/10.1002/ptr.2362
Bhargava, V.V., Patel, S.C., & Desai, K.S. (2013). Importance of terpenoids and essential oils in chemotaxonomic approach. International Journal of Herbal Medicine, 1(2),14 – 21.
Burkill, H.M. (1985). The Useful Plants of Tropical Africa. Royal Botanic Gardens, Kew, Richmond, United Kingdom. 960 pp.
Ekeke, C., & Agbagwa, I. O. (2014). Ergastic substances (calcium oxalate crystals) in the leaf of Combretum Loefl. (Combretaceae) species in Nigeria. American Journal of Plant Science, 5, 2389 – 2401. DOI: https://doi.org/10.4236/ajps.2014.515252
El-Olemyl, M.M., Muhtadi, F.J.A., & Afifi, A.A. (1994). Experimental Phytochemistry: A Laboratory Manual. College of Pharmacy, King Saud University, Saudi Arabia.
Erst, A.A., Petruk, A.A., Zibareva, L.N., & Erst, A.S. (2021). Morphological, histochemical and biochemical features of cultivated Rhodiola rosea (Altai mountains ecotype). Contemporary Problems of Ecology, 14, 701 – 710. DOI: https://doi.org/10.1134/S1995425521060135
Gott, B., Barton, H., Samuel, D., & Torrence, R. (2006). Biology of Starch. In: R. Torrence, & H. Barton, (eds.), Ancient Starch Research (pp 35 – 45), Left Coast Press, California.
Harvey, A. (2000). Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today, 5 (7),294 – 300. DOI: https://doi.org/10.1016/S1359-6446(00)01511-7
Jayasinghe, U. L. B, Jayasooriya, C. P., & Bandara, B. M. R. (2002). Antimicrobial activity of some Sri Lankan Rubiaceae and Meliaceae. Fitoterapia,73 (5),424 - 427. DOI: https://doi.org/10.1016/S0367-326X(02)00122-3
Jing-Qiu, D., Zhong-Li, L., & Li, Y. (2002). Non-glycosidic iridoids from Cymbaria mongolica. Phytochemistry, 59, 537–542. DOI: https://doi.org/10.1016/S0031-9422(01)00488-5
Kim, N. C., Desjardins, A. E., Wu, C. D., & Kinghorn, A. D. (1999). Activity of triterpenoid glycosides from the root bark of Mussaenda macrophylla against oral pathogens. Journal of Natural Products, 62,1379 – 1384. DOI: https://doi.org/10.1021/np9901579
Kolawole, O. S., Jimoh, M. A., Yakubu, F., & Chukwuma, E. C. (2017). Taxonomic value of the leaf micro-morphology and quantitative phytochemistry of Jatropha integerrima Jacq. And Jatropha podagrica Hook. (Euphorbiaceae) – known horticultural plants in Nigeria. Anales de Biologia, 39, 55 – 62. DOI: https://doi.org/10.6018/analesbio.39.06
Kolodziej, H., & Kiderlen, A. F. (2005). Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry, 66 (17),2056 – 2071. DOI: https://doi.org/10.1016/j.phytochem.2005.01.011
Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports, 6, 1-18. DOI: https://doi.org/10.1038/srep28591
Manandar, N. P., & Manandar, S. P. (2002). Plants and People of Nepal, Timber Press, 327 pp.
Nwafor, F.I., & Orabueze, C.I. (2019). Role of Phytochemistry in Plant Classification: Phytochemotaxonomy. In C. Egbuna, J.C. Ifemeje, S.C. Udedi, & S. Kumar, (eds.). Phytochemistry, Volume 1: Fundamentals, Modern Techniques, and Applications.Apple Academic Press, UK &Canada, pp 197 – 222. DOI: https://doi.org/10.1201/9780429426223-7
Nwafor, F.I., Igwe, U., Ogbonna, C., Ajuziogu, G.C., & Nwosu, M.O. (2021). Wood anatomical studies reveal taxonomic relationships, environmental influence and pulp potential in four taxa of Mussaenda (Rubiaceae) grown in Nigeria. Journal of Experimental Biology and Agricultural Sciences 9 (1),100-107. DOI: https://doi.org/10.18006/2021.9(1).100.107
Nwafor, F.I., Nwosu, M.O., & Nwafor, A.Z. (2019) Taxonomic and ecological significance of foliar epidermal characters in four taxa of Mussaenda L. (Rubiaceae) in Nigeria. Annual Research & Review in Biology,32(5): 1-12. DOI: https://doi.org/10.9734/arrb/2019/v32i530100
Nweze, N.O., & Nwafor, F.I.(2014). Phytochemical, proximate and mineral composition of leaf extracts of Moringa oleifera Lam. from Nsukka, South-Eastern Nigeria. IOSR Journal of Pharmacy and Biological Sciences, 9(1): 99 – 103. DOI: https://doi.org/10.9790/3008-091699103
Nwokonkwo, D. C. (2009). Phytochemical constitution and antimicrobial activity of the stem bark extract of Ficus Asperifolia (sand paper) tree. Journal of Chemical Society of Nigeria, 34 (2):119 – 122.
Okwu, D. E. (2001). Evaluation of the chemical composition of indigenous spices and flavouring agents. Global Journal of Pure and Applied Sciences, 7 (3): 455 – 459. DOI: https://doi.org/10.4314/gjpas.v7i3.16293
Pandey, S. N., & Misra, S. P. (2008). Taxonomy of Angiosperms. Ane Books Pvt. Ltd.,New Delhi, India, 620 pp.
Salim, A. A., Chin, Y. W., & Kinghorn, A. D. (2008). Drug Discovery from Plants. In: K. G. Ramawat, and J. M. Merillon, (eds). Bioactive Molecules and Medicinal Plants (pp. 10 – 25). Springer, USA. DOI: https://doi.org/10.1007/978-3-540-74603-4_1
Singh, R. (2016). Chemotaxonomy: A tool for plant classification. Journal of Medicinal Plants Studies, 4(2),90 – 93.
Sofowora, A. (1993). Medicinal Plants and Traditional Medicinal in Africa (2nd Ed). Spectrum Books Ltd, Sunshine House, Ibadan, Nigeria.
Soladoye, M. O., & Chukwuma, E. C. (2012). Phytochemical analysis of the stem and root of Cissus populnea (Vitaceae) - an important medicinal plant in Central Nigeria. Phytologia Balcanica, 18 (2),149-153.
Sonibare, M. A., & Adeniran, A. A. (2014). Comparative micromorphological study of wild and micropropagated Dioscorea bulbiferaLinn. Asian Pacific Journal of Tropical Biomedicine, 4 (3),176 – 183. DOI: https://doi.org/10.1016/S2221-1691(14)60228-8
Stuart, G. (2016). Philippine Alternative Medicine. Retrieved from http://stuartxchange.com/. Accessed on 27th June, 2016.
Suksungworn, R., & Duangsrisai, S. (2021). Phytochemical contents and antioxidant activity of medicinal plants from the Rubiaceae family in Thailand. Plant Science Today, 8(1): 24 – 31. DOI: https://doi.org/10.14719/pst.2021.8.1.882
Sunit, S., Kanjana, W., & Kanyawim, K. (2003). Iridoid glucosides from the sepals of Barleria lupulina. Planta Medica, 69, 877 - 879. DOI: https://doi.org/10.1055/s-2003-43223
Trease, G. E., & Evans, W. C. (2002). Pharmacognosy (15th Ed). Saunders Publishers, London.
Venkatesh, K., Rao, U. U., Kiranmayi, G. V. N., Naik, R. N., Mukharjee, N. S. V., Vinay, V. N. V., & Phanindra, K. (2013). Phytochemical screening and evaluation of diuretic activity of ethanolic and chloroform extracts of Mussaenda erythrophylla in rats. International Journal of Biological and Pharmaceutical Research, 4 (1): 8 – 10.
Vidyalakshmi, K. S., Charles, D. A., & Hannah, R.V. (2007). Antimitotic and cytotoxic activity of Mussaenda “Queen Sirikit”. Journal of Pharmacology and Toxicology, 2 (7), 660 – 665. DOI: https://doi.org/10.3923/jpt.2007.660.665
Vijisaral E. D., & Subramanian, A. (2013). Identification of Phytochemical Constituents and Antimicrobial Activity of Indigofera Suffruticosa Leaves. International Journal of Current Biotechnology, 1(7),6-10.
Yaolan, L., Linda, S. M., Hua, W., Paul, P. H., & Vincent, E. C. O. (2004). Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research, 18 (9),718 – 722. DOI: https://doi.org/10.1002/ptr.1518
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.