Madin-Darby Canine Kidney (MDCK) Cell line permeability of Curcumin loaded Phycocyanin nanosponges - In-Vitro study
DOI:
https://doi.org/10.18006/2022.10(4).812.817Keywords:
BBB, MDCK, Nanosponges, Curcumin, PhycocyaninAbstract
Blood Brain barrier (BBB) is a natural protective wall in the brain to restrict the invasion of xenobiotics or toxic chemicals. This, in turn, becomes a major obstacle for researchers and industry people in formulating new drugs to treat brain disorders like brain tumors, Alzheimer's disease, multiple sclerosis, meningitis, and so on. The purpose of this research is to study the in-vitro cytotoxicity & BBB permeation of curcumin-loaded phycocyanin nanosponges (Cur-PC NS) using Madin-Darby Canine Kidney (MDCK) cell lines. Cell viability of Cur-PC NS was performed using 3-(4,5-dimethylthiazol-2-yl)-2.5- diphenyltetrazolium bromide (MTT) assay, the transepithelial electrical resistance (TEER) values, and permeability coefficient were measured to test the integrity of monolayer of MDCK cell line. Results of the current study showed that Cur-PC NS at 50µM, 85% of MDCK cells are more viable and there was a significant (p<0.01) reduction in TEER values up to 48 hours when compared to the curcumin. The permeability coefficient of nanosponges produced a 2.5-fold increase in enhancement ratio with a Papp value of 1.94±0.11×10-6 cm/s and 4.86±0.04×10-6cm/s for curcumin and Cur-PC NS respectively. Results of the study can be concluded that phycocyanin nanosponges can be used as a carrier for curcumin to permeate the BBB which may play a major role in the treatment of various brain disorders. Future studies are needed to substantiate the exact mechanism of permeability with clarification of efflux transporters presented in BBB.
References
Banerjee, J., Shi, Y., & Azevedo, H. S. (2016). In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discovery Today, 21(9), 1367-1386 DOI: https://doi.org/10.1016/j.drudis.2016.05.020
Del Prado-Audelo, M. L., Caballero-Florán, I. H., Meza-Toledo, J. A., Mendoza-Muñoz, N., et al. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 9(2), 56 DOI: https://doi.org/10.3390/biom9020056
Gharakhloo, M., Sadjadi, S., Rezaeetabar, M., Askari, F., Rahimi, A., et al. (2020). Cyclodextrin-based nanosponges for improving solubility and sustainable release of curcumin. Biological Chemistry & Chemical Biology, Chemistry Select, 5, 1734–1738 DOI: https://doi.org/10.1002/slct.201904007
Horio, M., Chin, K.V., Currier, S J., & Goldenberg, S., et al. (1989). Transepithelial Transport of Drugs by the Multidrug Transporter in Cultured Madin-Darby Canine Kidney Cell Epitheli. Journal of Biological Chemistry, 264(25), 14880-14884 DOI: https://doi.org/10.1016/S0021-9258(18)63784-6
Irvine, J D., Takahashi, L., Lockhart, K., Cheong, J., et al. (1999). MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88, 28-33 DOI: https://doi.org/10.1021/js9803205
Jiang, L., Kumar, S., Nuechterlein, M., Reyes, M., et al. (2022). Application of a high-resolution in vitro human MDR1-MDCK assay and in vivo studies in preclinical species to improve prediction of CNS drug penetration. Pharmacology Research & Perspectives, 10(1), e00932 DOI: https://doi.org/10.1002/prp2.932
Jiang, L., Wang, Y., Yin, Q., Liu, G., et al. (2017). Phycocyanin: A Potential Drug for Cancer Treatment. Journal of Cancer, 8(17), 3416–3429 DOI: https://doi.org/10.7150/jca.21058
Kadry, H., Behnam, N., & Luca, C. (2020). A blood–brain barrier overview on structure function, impairment and biomarkers of integrity. Fluids Barriers CNS, 17, 69 DOI: https://doi.org/10.1186/s12987-020-00230-3
Löscher, W., & Potschka, H. (2005). Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx: The Journal of the American Society for Experimental Neuro Therapeutics, 2(1), 86–98 DOI: https://doi.org/10.1602/neurorx.2.1.86
MalekiDizaj, S., Alipour, M., DalirAbdolahinia, E., Ahmadian, E., et al. (2022). Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytotherapy Research, 36(3), 1156– 1181 DOI: https://doi.org/10.1002/ptr.7389
Manjuladevi, K., & Velmurugan, R., (2020). A perspective view on formulation and optimization of curcumin loaded phycocyanin nanosponges. International Journal of Research in Pharmaceutical Sciences , 11(4), 8119-8123 DOI: https://doi.org/10.26452/ijrps.v11i4.4874
Neil, V. K., & Sandeep, M., (2016). Therapeutic potential of curcumin for the treatment of brain tumors. Oxidative Medicine and Cellular Longevity, 1, 1-14 DOI: https://doi.org/10.1155/2016/9324085
Neumaier, F., Zlatopolskiy, B.D., & Neumaier, B. (2021). Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics, 13, 1542 DOI: https://doi.org/10.3390/pharmaceutics13101542
Nikandish, N., Hosseinzadeh, L., HematiAzandaryani, A., & Derakhshandeh, K. (2016). The Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model. Iranian journal of Pharmaceutical Research, 15(2), 403–413.
Pardridge W. M. (2005). The blood-brain barrier: bottleneck in brain drug development. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, 2(1), 3–14 DOI: https://doi.org/10.1602/neurorx.2.1.3
Polli, J.W., Humphreys, J.E., Wring, S.A., Burnette, T C., et al. (2000). Comparison of MDCK and bovine brain endothelial cells (BBECs) as a blood-brain barrier screen in early drug discovery. In M. Balls, A.M. van Zeller, & M Halder (Eds.) Progress in the Reduction, Refinement and Replacement of Animal Experimentation (pp 271–289), New York: Elsevier Science
Prathima, S., & Sreeja, K. (2013). Formulation and Evaluation of Voriconazole loaded nanosponges for oral and topical delivery. International Journal of drug delivery and research, 5(1), 55-69
Pushpalatha, R., Selvamuthukumar, S., & Kilimozhi, D. (2018). Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45–53 DOI: https://doi.org/10.1016/j.jddst.2018.03.004
Sánchez-Dengra, B., González-Álvarez, I., González-Álvarez, M., & Bermejo, M. (2021). New In-Vitro methodology for kinetics distribution prediction in the brain. An additional step towards an animal-free approach. Animals, 11(12), 3521 DOI: https://doi.org/10.3390/ani11123521
Suresh, T., Fong, Y. C., & Chia, H. S. (2020). Advancements in the Blood–Brain Barrier Penetrating, Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers, 12, 3055 DOI: https://doi.org/10.3390/polym12123055
Susanna, G., Alice, C., Andrea, B., Riccardo A.. et al. (2020). Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 1, 2501-2508 DOI: https://doi.org/10.1039/D0MA00566E
Taub, M. E., Kristensen, L., & Frokjaer, S. (2002). Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I-IV. European Journal of Pharmaceutical Sciences: official journal of the European Federation for Pharmaceutical Sciences, 15(4), 331–340 DOI: https://doi.org/10.1016/S0928-0987(02)00015-5
Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2013). Curcumin nanomedicine: a road to cancer therapeutics. Current Pharmaceutical Design, 19(11), 1994–2010 DOI: https://doi.org/10.2174/138161213805289219
Tejashri, G., Bajaj, A., & Jain, D. (2013). Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharmaceutica, 63, 335–358 DOI: https://doi.org/10.2478/acph-2013-0021
Velmurugan, R., Manjuladevi, K., Keerthi, G., Yamuna, R., et al. (2019). A method to enhance blood brain barrier permeability of curcumin. The Patent office Journal No. 46/2019, Application No 201941045090A, 53972
Wan, D. H., Zheng, B. Y., Ke, M. R., Duan, J. Y., et al. (2017). C-Phycocyanin as a tumour-associated macrophage-targeted photosensitiser and a vehicle of phthalocyanine for enhanced photodynamic therapy. Chemical Communications (Cambridge, England), 53(29), 4112-4115 DOI: https://doi.org/10.1039/C6CC09541K
Wang, M., Zhang, Y., Sun, B., Sun, Y., et al. (2014). Permeability of exendin-4-loaded chitosan nanoparticles across MDCK cell monolayers and rat small intestine. Biological & pharmaceutical bulletin, 37(5), 740–747 DOI: https://doi.org/10.1248/bpb.b13-00591
Yeh, T. H., Hsu, L. W., Tseng, M. T., Lee, P L., et al. (2011). Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 32, 6164–6173 DOI: https://doi.org/10.1016/j.biomaterials.2011.03.056
Zanotto-Filho, A., Braganhol, E., Edelweiss, M. I., Behr, A G., et al. (2012). The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of Glioblastoma. The Journal of Nutritional Biochemistry, 23(6), 591-601 DOI: https://doi.org/10.1016/j.jnutbio.2011.02.015
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.