Synthesis and Characterization of Magnesium Doped Ferric Sulphate Nanoparticles (Mg-Fe2SO3 NPs) for Agriculture Applications
DOI:
https://doi.org/10.18006/2022.10(4).773.780Keywords:
Mg-Fe2SO3 NPs, XRD, FESEM, Seed germination, Cowpea seed, Vigna unguiculataAbstract
The present study aimed to synthesize the magnesium doped ferric sulphate nanoparticles (Mg-Fe2SO3 NPs) and investigate their seed germination efficacy. Mg-Fe2SO3 NPs were prepared by a simple and cost-effective method and subjected to characterization. The X-ray Diffraction (XRD) spectrum revealed the crystalline nature of Mg-Fe2SO3 NPs with an average crystallite size of 36.41 nm. The field emission scanning electron microscope (FESEM) image displayed the agglomeration of Mg-Fe2SO3 NPs with the shape of the grains appeared like starfish which has limbs grown from a common cluster. The energy dispersive X-ray spectroscopy (EDS) demonstrated the existence of C (10.5%), O (49.14%), Fe (26.67%), Mg (0.78%) and S (13.35%) elements in Mg-Fe2SO3 NPs. It also revealed the absence of impurities in the synthesized NPs. Through Fourier transform infrared spectroscopy (FTIR), Mg-Fe2SO3 NPs showed the characteristic peaks at 615.29cm-1, 1130.29cm-1, 1400.32 cm-1and 1633.71cm-1 which corresponded to Fe-O, C-N, O-H and N-H vibration respectively. Further, the seed germination study revealed that the Mg-Fe2SO3 NPs treatment caused a significant increase in seedling growth of cowpea (Vigna unguiculata) seeds compared to the untreated samples.
References
An, Y., & Zhong, C. (2019). Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20,1003, 1-21, https://doi.org/10.3390/ijms20051003 DOI: https://doi.org/10.3390/ijms20051003
Anam, A., Abad, A., Mohd, A., & Shamsuzzaman. A. (2018). Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New Journal of chemistry, 42, 184-197. DOI: https://doi.org/10.1039/C7NJ03742B
Anthony, C., Kyle, J., Christina, M., Anne, A., & David, W. B. (2020). A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy, 10(7), 1018, 1-20, https://doi.org/10.3390/agronomy10071018 DOI: https://doi.org/10.3390/agronomy10071018
Asma, N., Crispin, H., & Mudassar, I. (2019). Impact of AgNPs on Seed Germination and Seedling Growth: A Focus Study on Its Antibacterial Potential against Clavibacter michiganensi- s subsp. michiganensis Infection in Solanum lycopersicum. Journal of Nanomaterials, 2019,6316094, 1-13, https://doi.org/10.1155/ 2019/6316094 DOI: https://doi.org/10.1155/2019/6316094
Balakrishnan, K., Rajendran, C., & Kulandaivelu, G. (2000). Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica, 38(3), 477-479 DOI: https://doi.org/10.1023/A:1010958512210
Bharathi, D., Ranjithkumar, R., Vasantharaj, S., Chander Shekar, B., & Bhuvaneshwari, V. (2019). Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132, 880-887 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.233
Deshpande, P., Dapkekar, A., Oak, M. D., Paknikar, K. M., & Rajwade, J. M. (2017). Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate polymers, 165, 394-401 DOI: https://doi.org/10.1016/j.carbpol.2017.02.061
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., et al. (2016). Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Frontiers in Environmental Science, 4,1-5. doi: 10.3389/fenvs.2016.00020 DOI: https://doi.org/10.3389/fenvs.2016.00020
Fuad, A., Khawla, A., Jamila, A. A., & Saleh, A. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027, 1-17, https://doi.org/10.1016/j.ecoenv.2021.112027 DOI: https://doi.org/10.1016/j.ecoenv.2021.112027
Ibrahim, K., Khalid, S., & Idrees, K. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931
Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65, 551-560 DOI: https://doi.org/10.1111/ppa.12443
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074 DOI: https://doi.org/10.3762/bjnano.9.98
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Kumari, R., & Singh, D. P. (2020). Nano-biofertilizer: An Emerging Eco-friendly Approach for Sustainable Agriculture. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90, 733-741, https://doi.org/10.1007/s40011-019-01133-6 DOI: https://doi.org/10.1007/s40011-019-01133-6
Kumbhakar, P., Ray, S. S., & Stepanov, A. L. (2014). Optical properties of nanoparticles and nanocomposites. Journal of Nanomaterial, 2014, 181365. 1-2,https://doi.org/10.1155/ 2014/181365 DOI: https://doi.org/10.1155/2014/181365
Kumutha, K., & Alias, Y. (2006). FTIR spectra of plasticized grafted natural rubber-LiCF3SO3 electrolytes. Spectrochimica Acta Part A,64, 442-447 DOI: https://doi.org/10.1016/j.saa.2005.07.044
Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., et al. (2019). Surface Study of Fe3O4 Nanoparticles Functionalized with Biocompatible Adsorbed Molecules. Frontiers in Chemistry, 7:642, 1-16, https://doi.org/10.3389/fchem.2019.00642 DOI: https://doi.org/10.3389/fchem.2019.00642
Madhan, G., Begam, A. A., Varsha, L. V., Ranjithkumar, R., & Bharathi, D. (2021). Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. International Journal of Biological Macromolecules, 190, 259-269 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.100
Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S.A. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Frontiers in Nanotechnology, 2 (579954), 1-38 DOI: https://doi.org/10.3389/fnano.2020.579954
Ning, P., Liu, C. C., Wang, Y. J., Li, X. Z., et al. (2020). Facile synthesis, antibacterial mechanisms and cytocompatibility of Ag-MnFe2O4 magnetic nanoparticles. Ceramic International, 46, 20150-20115 DOI: https://doi.org/10.1016/j.ceramint.2020.05.085
Partila, A. M. (2019). Bioproduction of Silver Nanoparticles and Its Potential Applications in Agriculture. In: D. Panpatte, Y. Jhala (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_2 DOI: https://doi.org/10.1007/978-981-32-9370-0_2
Pathirana, C. K., Madhujith, T., & Eeswara, J. (2020). Bael (Aegle marmelos L. Corrêa), a Medicinal Tree with Immense Economic Potentials. Advances in Agriculture, 2020, 88140148, 1-13, https://doi.org/10.1155/2020/8814018 DOI: https://doi.org/10.1155/2020/8814018
Piyush, G.K., Senthilkumar, P., Tamilarasi, G., Ranjithkumar. R., et al. (2021). Synthesis and Characterization of Novel Fe3O4/PVA/Egg-shell Hybrid nanocomposite for photodegradation and antibacterial activity. Journal of Composite Science, 5(267), 1-9, https://doi.org/ 10.3390/jcs5100267 DOI: https://doi.org/10.3390/jcs5100267
Pouratashi, M., & Iravani, H. (2012). Farmers’ knowledge of integrated pest management and learning style preferences: implications for information delivery. International Journal Pest Management, 58, 347-353, doi: 10.1080/09670874.2012.724468 DOI: https://doi.org/10.1080/09670874.2012.724468
Pradeep, A., Priyadharsini, G., & Chandrasekaran, G. (2008). Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. Journal of Magnetism and Magnetic Materials, 320, 2774-2779 DOI: https://doi.org/10.1016/j.jmmm.2008.06.012
Pradeev R. K., Sadaiyandi, K., Kennedy, A., Suresh, S., et al. (2018). Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Research Letters, 13:229, 1-13, https://doi.org/10.1186/s11671-018-2643-x DOI: https://doi.org/10.1186/s11671-018-2643-x
Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology, 8:1014, 1-13, https://doi.org/10.3389/fmicb.2017.01014 DOI: https://doi.org/10.3389/fmicb.2017.01014
Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonellafoenum graecum). Bulletin National Research Centre 43:38, 1-6, https://doi.org/10.1186/s42269-019-0077-y DOI: https://doi.org/10.1186/s42269-019-0077-y
Somenath, D., Arpan. M., Gereraj, S., &Vipin, K. S. (2020). Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, 2020, 371-401 DOI: https://doi.org/10.1016/B978-0-12-818598-8.00018-3
Sun, H. (2019). Grand Challenges in Environmental Nanotechnology. Frontiers in Nanotechnology, 1(2), 1-3, doi:10.3389/fnano.2019.00002 DOI: https://doi.org/10.3389/fnano.2019.00002
Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnology Biology Medicine, 6, 257-262 DOI: https://doi.org/10.1016/j.nano.2009.07.002
Weitao, L., Aurang, Z., Jiapan, L., Jiani, W., et al. (2020). Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environmental Reviews, 28(3), 294-310 DOI: https://doi.org/10.1139/er-2019-0085
Win, T. T., Khan, S., Bo, B., Shah, Z., & Pengcheng, F. (2021). Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Scientific Reports, 11:21996, 1-11, https://doi.org/10.1038/s41598-021-01538-2 DOI: https://doi.org/10.1038/s41598-021-01538-2
Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad, M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12(2), 495, 1-30, doi: https://doi.org/10. 3390/w12020495 DOI: https://doi.org/10.3390/w12020495
Yata, V. K., Tiwari, B. C., & Ahmad, I. (2018). Nanoscience in food and agriculture: Research, industries and patents. Environmental Chemistry Letter,16, 79-84 DOI: https://doi.org/10.1007/s10311-017-0666-7
Yi, H., Zetian, Z., Yukui, R., Jing, Y. R., et al. (2016). Effect of Different Nanoparticles on Seed Germination and Seedling Growth in Rice, 2nd Annual International Conference on Advanced Material Engineering (AME 2016), 166-173
Yilin, Z., Jiajun, Y., Astrid, A., Xiaoyu, G., et al. (2020). Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for in Vivo Agrochemical Delivery. ACS Nano, 14(9), 10954-10965 DOI: https://doi.org/10.1021/acsnano.0c03140
Yu, W. T., Chieh-Chao, Y., Ming-Hang, Y., Chum-Sam, H., et al. (2011). Preparation and characterization of p-type Fe2O3 pellets from Mg doping in pure oxygen atmosphere at high temperatures. Journal of the Taiwan Institute of Chemical Engineers, 42, 669-673 DOI: https://doi.org/10.1016/j.jtice.2010.12.001
Zhu, D., & Zhou, Q. (2019). Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology Monitoring Management, 12, 100255, 1-11 DOI: https://doi.org/10.1016/j.enmm.2019.100255
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.