Synthesis and Characterization of Magnesium Doped Ferric Sulphate Nanoparticles (Mg-Fe2SO3 NPs) for Agriculture Applications

Authors

DOI:

https://doi.org/10.18006/2022.10(4).773.780

Keywords:

Mg-Fe2SO3 NPs, XRD, FESEM, Seed germination, Cowpea seed, Vigna unguiculata

Abstract

The present study aimed to synthesize the magnesium doped ferric sulphate nanoparticles (Mg-Fe2SO3 NPs) and investigate their seed germination efficacy. Mg-Fe2SO3 NPs were prepared by a simple and cost-effective method and subjected to characterization. The X-ray Diffraction (XRD) spectrum revealed the crystalline nature of Mg-Fe2SO3 NPs with an average crystallite size of 36.41 nm. The field emission scanning electron microscope (FESEM) image displayed the agglomeration of Mg-Fe2SO3 NPs with the shape of the grains appeared like starfish which has limbs grown from a common cluster. The energy dispersive X-ray spectroscopy (EDS) demonstrated the existence of C (10.5%), O (49.14%), Fe (26.67%), Mg (0.78%) and S (13.35%) elements in Mg-Fe2SO3 NPs. It also revealed the absence of impurities in the synthesized NPs. Through Fourier transform infrared spectroscopy (FTIR), Mg-Fe2SO3 NPs showed the characteristic peaks at 615.29cm-1, 1130.29cm-1, 1400.32 cm-1and 1633.71cm-1 which corresponded to Fe-O, C-N, O-H and N-H vibration respectively. Further, the seed germination study revealed that the Mg-Fe2SO3 NPs treatment caused a significant increase in seedling growth of cowpea (Vigna unguiculata) seeds compared to the untreated samples.

References

An, Y., & Zhong, C. (2019). Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20,1003, 1-21, https://doi.org/10.3390/ijms20051003 DOI: https://doi.org/10.3390/ijms20051003

Anam, A., Abad, A., Mohd, A., & Shamsuzzaman. A. (2018). Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New Journal of chemistry, 42, 184-197. DOI: https://doi.org/10.1039/C7NJ03742B

Anthony, C., Kyle, J., Christina, M., Anne, A., & David, W. B. (2020). A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy, 10(7), 1018, 1-20, https://doi.org/10.3390/agronomy10071018 DOI: https://doi.org/10.3390/agronomy10071018

Asma, N., Crispin, H., & Mudassar, I. (2019). Impact of AgNPs on Seed Germination and Seedling Growth: A Focus Study on Its Antibacterial Potential against Clavibacter michiganensi- s subsp. michiganensis Infection in Solanum lycopersicum. Journal of Nanomaterials, 2019,6316094, 1-13, https://doi.org/10.1155/ 2019/6316094 DOI: https://doi.org/10.1155/2019/6316094

Balakrishnan, K., Rajendran, C., & Kulandaivelu, G. (2000). Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica, 38(3), 477-479 DOI: https://doi.org/10.1023/A:1010958512210

Bharathi, D., Ranjithkumar, R., Vasantharaj, S., Chander Shekar, B., & Bhuvaneshwari, V. (2019). Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. International Journal of Biological Macromolecules, 132, 880-887 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.233

Deshpande, P., Dapkekar, A., Oak, M. D., Paknikar, K. M., & Rajwade, J. M. (2017). Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate polymers, 165, 394-401 DOI: https://doi.org/10.1016/j.carbpol.2017.02.061

Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., et al. (2016). Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Frontiers in Environmental Science, 4,1-5. doi: 10.3389/fenvs.2016.00020 DOI: https://doi.org/10.3389/fenvs.2016.00020

Fuad, A., Khawla, A., Jamila, A. A., & Saleh, A. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027, 1-17, https://doi.org/10.1016/j.ecoenv.2021.112027 DOI: https://doi.org/10.1016/j.ecoenv.2021.112027

Ibrahim, K., Khalid, S., & Idrees, K. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931

Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65, 551-560 DOI: https://doi.org/10.1111/ppa.12443

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074 DOI: https://doi.org/10.3762/bjnano.9.98

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12, 908-931 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Kumari, R., & Singh, D. P. (2020). Nano-biofertilizer: An Emerging Eco-friendly Approach for Sustainable Agriculture. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90, 733-741, https://doi.org/10.1007/s40011-019-01133-6 DOI: https://doi.org/10.1007/s40011-019-01133-6

Kumbhakar, P., Ray, S. S., & Stepanov, A. L. (2014). Optical properties of nanoparticles and nanocomposites. Journal of Nanomaterial, 2014, 181365. 1-2,https://doi.org/10.1155/ 2014/181365 DOI: https://doi.org/10.1155/2014/181365

Kumutha, K., & Alias, Y. (2006). FTIR spectra of plasticized grafted natural rubber-LiCF3SO3 electrolytes. Spectrochimica Acta Part A,64, 442-447 DOI: https://doi.org/10.1016/j.saa.2005.07.044

Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., et al. (2019). Surface Study of Fe3O4 Nanoparticles Functionalized with Biocompatible Adsorbed Molecules. Frontiers in Chemistry, 7:642, 1-16, https://doi.org/10.3389/fchem.2019.00642 DOI: https://doi.org/10.3389/fchem.2019.00642

Madhan, G., Begam, A. A., Varsha, L. V., Ranjithkumar, R., & Bharathi, D. (2021). Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. International Journal of Biological Macromolecules, 190, 259-269 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.100

Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S.A. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Frontiers in Nanotechnology, 2 (579954), 1-38 DOI: https://doi.org/10.3389/fnano.2020.579954

Ning, P., Liu, C. C., Wang, Y. J., Li, X. Z., et al. (2020). Facile synthesis, antibacterial mechanisms and cytocompatibility of Ag-MnFe2O4 magnetic nanoparticles. Ceramic International, 46, 20150-20115 DOI: https://doi.org/10.1016/j.ceramint.2020.05.085

Partila, A. M. (2019). Bioproduction of Silver Nanoparticles and Its Potential Applications in Agriculture. In: D. Panpatte, Y. Jhala (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_2 DOI: https://doi.org/10.1007/978-981-32-9370-0_2

Pathirana, C. K., Madhujith, T., & Eeswara, J. (2020). Bael (Aegle marmelos L. Corrêa), a Medicinal Tree with Immense Economic Potentials. Advances in Agriculture, 2020, 88140148, 1-13, https://doi.org/10.1155/2020/8814018 DOI: https://doi.org/10.1155/2020/8814018

Piyush, G.K., Senthilkumar, P., Tamilarasi, G., Ranjithkumar. R., et al. (2021). Synthesis and Characterization of Novel Fe3O4/PVA/Egg-shell Hybrid nanocomposite for photodegradation and antibacterial activity. Journal of Composite Science, 5(267), 1-9, https://doi.org/ 10.3390/jcs5100267 DOI: https://doi.org/10.3390/jcs5100267

Pouratashi, M., & Iravani, H. (2012). Farmers’ knowledge of integrated pest management and learning style preferences: implications for information delivery. International Journal Pest Management, 58, 347-353, doi: 10.1080/09670874.2012.724468 DOI: https://doi.org/10.1080/09670874.2012.724468

Pradeep, A., Priyadharsini, G., & Chandrasekaran, G. (2008). Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. Journal of Magnetism and Magnetic Materials, 320, 2774-2779 DOI: https://doi.org/10.1016/j.jmmm.2008.06.012

Pradeev R. K., Sadaiyandi, K., Kennedy, A., Suresh, S., et al. (2018). Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Research Letters, 13:229, 1-13, https://doi.org/10.1186/s11671-018-2643-x DOI: https://doi.org/10.1186/s11671-018-2643-x

Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in Microbiology, 8:1014, 1-13, https://doi.org/10.3389/fmicb.2017.01014 DOI: https://doi.org/10.3389/fmicb.2017.01014

Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonellafoenum graecum). Bulletin National Research Centre 43:38, 1-6, https://doi.org/10.1186/s42269-019-0077-y DOI: https://doi.org/10.1186/s42269-019-0077-y

Somenath, D., Arpan. M., Gereraj, S., &Vipin, K. S. (2020). Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, 2020, 371-401 DOI: https://doi.org/10.1016/B978-0-12-818598-8.00018-3

Sun, H. (2019). Grand Challenges in Environmental Nanotechnology. Frontiers in Nanotechnology, 1(2), 1-3, doi:10.3389/fnano.2019.00002 DOI: https://doi.org/10.3389/fnano.2019.00002

Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine Nanotechnology Biology Medicine, 6, 257-262 DOI: https://doi.org/10.1016/j.nano.2009.07.002

Weitao, L., Aurang, Z., Jiapan, L., Jiani, W., et al. (2020). Interactions of metal-based nanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: a critical review of research progress and prospects. Environmental Reviews, 28(3), 294-310 DOI: https://doi.org/10.1139/er-2019-0085

Win, T. T., Khan, S., Bo, B., Shah, Z., & Pengcheng, F. (2021). Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Scientific Reports, 11:21996, 1-11, https://doi.org/10.1038/s41598-021-01538-2 DOI: https://doi.org/10.1038/s41598-021-01538-2

Yaqoob, A. A., Parveen, T., Umar, K., & Mohamad, M. N. (2020). Role of nanomaterials in the treatment of wastewater: a review. Water, 12(2), 495, 1-30, doi: https://doi.org/10. 3390/w12020495 DOI: https://doi.org/10.3390/w12020495

Yata, V. K., Tiwari, B. C., & Ahmad, I. (2018). Nanoscience in food and agriculture: Research, industries and patents. Environmental Chemistry Letter,16, 79-84 DOI: https://doi.org/10.1007/s10311-017-0666-7

Yi, H., Zetian, Z., Yukui, R., Jing, Y. R., et al. (2016). Effect of Different Nanoparticles on Seed Germination and Seedling Growth in Rice, 2nd Annual International Conference on Advanced Material Engineering (AME 2016), 166-173

Yilin, Z., Jiajun, Y., Astrid, A., Xiaoyu, G., et al. (2020). Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for in Vivo Agrochemical Delivery. ACS Nano, 14(9), 10954-10965 DOI: https://doi.org/10.1021/acsnano.0c03140

Yu, W. T., Chieh-Chao, Y., Ming-Hang, Y., Chum-Sam, H., et al. (2011). Preparation and characterization of p-type Fe2O3 pellets from Mg doping in pure oxygen atmosphere at high temperatures. Journal of the Taiwan Institute of Chemical Engineers, 42, 669-673 DOI: https://doi.org/10.1016/j.jtice.2010.12.001

Zhu, D., & Zhou, Q. (2019). Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology Monitoring Management, 12, 100255, 1-11 DOI: https://doi.org/10.1016/j.enmm.2019.100255

Downloads

Published

2022-08-30

How to Cite

Dhanabalan, K., Balasubramanian, D., Rajamani, R., Bellan, C. S., Wong, L. S., & Djearamane, S. (2022). Synthesis and Characterization of Magnesium Doped Ferric Sulphate Nanoparticles (Mg-Fe2SO3 NPs) for Agriculture Applications. Journal of Experimental Biology and Agricultural Sciences, 10(4), 773–780. https://doi.org/10.18006/2022.10(4).773.780

Issue

Section

RESEARCH ARTICLES

Categories