Effect of Titanium, Silver and Zinc Nanoparticles on Microalgae in the Aquatic Environment
DOI:
https://doi.org/10.18006/2022.10(4).767.772Keywords:
Metal nanoparticles, Microalgae, Aquatic ecosystem, ToxicityAbstract
Metallic nanoparticles (MNPs) are commonly incorporated in products found in households, industries, and agriculture. The presence of MNPs in the aquatic environment causes damage to living organisms and pollutes the water body rendering it harmful for human consumption. Several studies have been made on the toxicity of MNPs toward microalgae. Most of these studies reported changes in the cellular structure, growth rate, pigments, proteins, and enzymatic activity of microalgae. This review paper focuses on the toxic effects of titanium, zinc, and silver nanoparticles on microalgae in the aquatic environment. A better understanding of the behavior of MNPs in the ecosystem will allow scientists to produce environmentally safe MNPs.
References
Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4), 1461–1468. https://doi.org/10.1016/ j.scitotenv.2008.10.053 DOI: https://doi.org/10.1016/j.scitotenv.2008.10.053
Baharlooeian, M., Kerdgari, M., & Shimada, Y. (2021). Ecotoxicological effects of TiO2 nanoparticulates and bulk Ti on microalgae Chaetoceros muelleri. Environmental Technology & Innovation, 23, 101720. https://doi.org/10.1016/j.eti.2021.101720 DOI: https://doi.org/10.1016/j.eti.2021.101720
Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., et al. (2018). Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 30(1), 6. https://doi.org/10.1186/s12302-018-0132-6 DOI: https://doi.org/10.1186/s12302-018-0132-6
Burdușel, A.C., Gherasim, O., Grumezescu, A. M., Mogoantă, L., et al. (2018). Biomedical applications of Silver nanoparticles: An up-to-date overview. Nanomaterials, 8(9), 681. https://doi.org/ 10.3390/nano8090681 DOI: https://doi.org/10.3390/nano8090681
Chen, L., Zhou, L., Liu, Y., Deng, S., et al. (2012). Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 84, 155–162.https://doi.org/10.1016/j.ecoenv.2012.07.019 DOI: https://doi.org/10.1016/j.ecoenv.2012.07.019
Cho, W. S., Kang, B. C., Lee, J. K., Jeong, J. et al. (2013). Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and Fibre Toxicology, 10, 9. https://doi.org/10.1186/1743-8977-10-9 DOI: https://doi.org/10.1186/1743-8977-10-9
Deng, X. Y., Cheng, J., Hu, X. L., Wang, L., et al. (2017). Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 575, 87–96. https://doi.org/10.1016/j.scitotenv.2016.10.003 DOI: https://doi.org/10.1016/j.scitotenv.2016.10.003
Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2019a). Short-Term cytotoxicity of Zinc oxide nanoparticles on Chlorella vulgaris. Sains Malaysiana, 48(1), 69–73. DOI: https://doi.org/10.17576/jsm-2019-4801-08
Djearamane, S., Wong, L. S., Yang, M. L., & Poh, F. L. (2019b). Cytotoxic effects of zinc oxide nanoparticles on Chlorella Vulgaris. Pollution Research, 38(2), 479–484.
Djearamane, S., Wong, L. S., Yang, M. L., & Poh, F. L. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecology, Environment and Conservation, 26(2), 663–668.
Frazer, L. (2001). Titanium dioxide: Environmental white knight? Environmental Health Perspectives, 109(4), A174–A177. DOI: https://doi.org/10.2307/3454883
Gadzała-Kopciuch, R., Berecka, B., Bartoszewicz, J., & Buszewski, B. (2004). Some considerations about bioindicators in environmental monitoring. Polish Journal of Environmental Studies, 13(5), 453–462.
Hunter, P. R., MacDonald, A. M., & Carter, R. C. (2010). Water Supply and Health. PLoS Medicine, 7(11), e1000361. https://doi.org/10.1371/journal.pmed.1000361 DOI: https://doi.org/10.1371/journal.pmed.1000361
Iswarya, V., Bhuvaneshwari, M., Alex, S. A., Iyer, S., et al. (2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology, 161, 154–169. DOI: https://doi.org/10.1016/j.aquatox.2015.02.006
Ji, J., Long, Z., & Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 170(2), 525–530. https://doi.org/10.1016/j.cej.2010.11.026 DOI: https://doi.org/10.1016/j.cej.2010.11.026
Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1–18. https://doi.org/10.1155/2018/1062562 DOI: https://doi.org/10.1155/2018/1062562
Kahlon, S. K., Sharma, G., Julka, J. M., Kumar, A., Sharma, S., & Stadler, F. J. (2018). Impact of heavy metals and nanoparticles on aquatic biota. Environmental Chemistry Letters, 16(3), 919–946. https://doi.org/10.1007/s10311-018-0737-4 DOI: https://doi.org/10.1007/s10311-018-0737-4
Kaliamurthi, S., Selvaraj, G., Cakmak, Z. E., Korkmaz, A. D., & Cakmak, T. (2019). The relationship between Chlorella sp. and zinc oxide nanoparticles: Changes in biochemical, oxygen evolution, and lipid production ability. Process Biochemistry, 85, 43–50. https://doi.org/10.1016/j.procbio.2019.06.005 DOI: https://doi.org/10.1016/j.procbio.2019.06.005
Karakoti, A. S., Hench, L. L., & Seal, S. (2006). The potential toxicity of nanomaterials—The role of surfaces. Journal of the Minerals, Metals & Materials Society, 58, 77–82. https://doi.org/10.1007/s11837-006-0147-0 DOI: https://doi.org/10.1007/s11837-006-0147-0
Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Krysanov, E., Pavlov, D., Demidova, T., & Dgebuadze, Y. (2010). Effect of nanoparticles on aquatic organisms. Biology Bulletin, 37(4), 406–412. https://doi.org/10.1134/s1062359010040114 DOI: https://doi.org/10.1134/S1062359010040114
Lenaghan, S. C., Li, Y., Zhang, H., Burris, J. N., et al. (2013). Monitoring the environmental impact of TiO2 nanoparticles using a plant-based sensor network. IEEE Transactions on Nanotechnology, 12(2), 182–189. https://doi.org/10.1109/tnano.2013.2242089 DOI: https://doi.org/10.1109/TNANO.2013.2242089
Li, X., Schirmer, K., Bernard, L., Sigg, L., Pillai, S., & Behra, R. (2015). Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science: Nano, 2(6), 594–602. https://doi.org/10.1039/c5en00093a DOI: https://doi.org/10.1039/C5EN00093A
Liang, S. X. T., Wong, L. S., Dhanapal, A. C. T. A., & Djearamane, S. (2020). Toxicity of Metals and Metallic Nanoparticles on Nutritional Properties of Microalgae. Water, Air, & Soil Pollution, 231(2). https://doi.org/10.1007/s11270-020-4413-5 DOI: https://doi.org/10.1007/s11270-020-4413-5
Madhav, S., Ahamad, A., Singh, A. K., Kushawaha, J., et al. (2020). Water pollutants: Sources and impact on the environment and human health. Sensors in Water Pollutants Monitoring: Role of Material, 43–62. https://doi.org/10.1007/978-981-15-0671-0_4 DOI: https://doi.org/10.1007/978-981-15-0671-0_4
Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 445, 371–376. DOI: https://doi.org/10.1016/j.scitotenv.2012.12.051
Miao, A.J., Schwehr, K.A., Xu, C., Zhang, S.J., et al. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution,157 (11), 3034-3041 DOI: https://doi.org/10.1016/j.envpol.2009.05.047
Nam, S.H., & An, Y.J. (2019). Size- and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcuminfusionum. Ecotoxicology and Environmental Safety, 168, 388–393. https://doi.org/10.1016/j.ecoenv.2018.10.082 DOI: https://doi.org/10.1016/j.ecoenv.2018.10.082
Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80-85. DOI: https://doi.org/10.1016/j.ecoenv.2011.11.012
Ozkaleli, M., & Erdem, A. (2018). Biotoxicity of TiO2 Nanoparticles on Raphidocelis subcapitata Microalgae Exemplified by Membrane Deformation. International Journal of Environmental Research and Public Health, 15(3), 416. https://doi.org/10.3390/ijerph15030416 DOI: https://doi.org/10.3390/ijerph15030416
Peng, X., Palma, S., Fisher, N. S., & Wong, S. S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102(3-4), 186–196. https://doi.org/10.1016/j.aquatox.2011.01.014 DOI: https://doi.org/10.1016/j.aquatox.2011.01.014
Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14. https://doi.org/10.1007/s11051-012-1109-9 DOI: https://doi.org/10.1007/s11051-012-1109-9
Samei, M., Sarrafzadeh, M.H., & Faramarzi, M. A. (2018). The impact of morphology and size of zinc oxide nanoparticles on its
toxicity to the freshwater microalga, Raphidocelis subcapitata. Environmental Science and Pollution Research, 26, 2409–2420. https://doi.org/10.1007/s11356-018-3787-z DOI: https://doi.org/10.1007/s11356-018-3787-z
Sendra, M., Moreno-Garrido, I., Yeste, M. P., Gatica, J. M., & Blasco, J. (2017). Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environmental Pollution, 227, 39–48. https://doi.org/ 10.1016/j.envpol.2017.04.053 DOI: https://doi.org/10.1016/j.envpol.2017.04.053
Shah, S. N. A., Shah, Z., Hussain, M., & Khan, M. (2017). Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorganic Chemistry and Applications, 2017, 1–12. https://doi.org/10.1155/2017/4101735 DOI: https://doi.org/10.1155/2017/4101735
Strambeanu, N., Demetrovici, L., Dragos, D., & Lungu, M. (2014). Nanoparticles: Definition, Classification and General Physical Properties. Nanoparticles’ Promises and Risks, 3–8. https://doi.org/10.1007/978-3-319-11728-7_1 DOI: https://doi.org/10.1007/978-3-319-11728-7_1
Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30. https://doi.org/10.1016/j.ecoenv.2014.11.015 DOI: https://doi.org/10.1016/j.ecoenv.2014.11.015
Tripathi, D. K., Tripathi, A., Shweta, Singh, S., et al. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Frontiers in Microbiology, 8. https://doi.org/https:// doi.org/10.3389/fmicb.2017.00007 DOI: https://doi.org/10.3389/fmicb.2017.00007
Wang, F., Guan, W., Xu, L., Ding, Z., et al. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences, 9(8), 1534. https://doi.org/10.3390/app9081534 DOI: https://doi.org/10.3390/app9081534
Wang, J., & Wang, W. (2014). Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. Journal of Zhejiang University SCIENCE A, 15, 573–592. https://doi.org/10.1631/jzus.a1400109 DOI: https://doi.org/10.1631/jzus.A1400109
Wang, S., Lv, J., Ma, J., & Zhang, S. (2016). Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology, 10(8), 1129–1135. https://doi.org/10.1080/17435390.2016.1179809 DOI: https://doi.org/10.1080/17435390.2016.1179809
Xia, B., Sui, Q., Sun, X., Han, Q., et al. (2018). Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgaris. Journal of Hazardous Materials, 346, 1–9. https://doi.org/10.1016/j.jhazmat.2017.12.017 DOI: https://doi.org/10.1016/j.jhazmat.2017.12.017
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.