Marburg Virus Disease – A Mini-Review
DOI:
https://doi.org/10.18006/2022.10(4).689.696Keywords:
Marburg virus, Marburg virus disease, Bat, Zoonosis, Prevention and controlAbstract
Marburg virus disease (MVD) is a highly fatal disease caused by the Marburg virus (MARV) which belongs to the family Filoviridae. The disease has been recently reported from Ghana, an African country, and nearly 15 outbreaks of MVD have been reported in the past five decades. Various species of bats viz., Rousettus aegyptiacus, Hipposideros caffer, and certain Chiroptera act as the natural source of infection. Pathophysiology of the disease reveals severe antiviral suppression due to changes in gene expression and interferon-stimulated gene (ISG) production in the hepatic cells. With the progression of the disease, there may be the development of pain in the abdomen, nausea, vomition, pharyngitis, and diarrhea along with the onset of hemorrhagic manifestations which may lead to the death of a patient. The advent of molecular detection techniques and kits viz., reverse transcription polymerase chain reaction (RT-PCR) kit has greatly aided in the diagnosis of MVD. Identification of the virus in the specimen with great accuracy can be done by whole viral genome sequencing. The use of a combination of MR-186-YTE (monoclonal antibody) and an antiviral drug named remdesivir in the NHP model is greatly effective for eliminating MARV. The protective effect of a Vesicular stomatitis virus (VSV) (recombinant) - based vaccine expressing the glycoprotein of MARV has been revealed through animal model studies, other vaccines are also being developed. Proper health education, personal hygiene and precautions by health care workers while handling patients, good laboratory facilities and service along with the establishment of enhanced surveillance systems are the need of the hour to tackle this highly fatal disease. This article presents an overview of different aspects and salient features of MARV / MVD, and prevention and control strategies to be adopted.
References
Abir, M. H., Rahman, T., Das, A., Etu, S. N., et al. (2022). Pathogenicity and virulence of Marburg virus. Virulence, 13(1), 609-633. DOI:10.1080/21505594.2022.2054760 DOI: https://doi.org/10.1080/21505594.2022.2054760
Aborode, A. T., Wireko, A. A., Bel-Nono, K. N., Quarshie, L. S., Allison, M., & Bello, M. A. (2022). Marburg virus amidst COVID-19 pandemic in Guinea: Fighting within the looming cases. The International Journal of Health Planning and Management, 37(1), 553-555. DOI: 10.1002/hpm.3332 DOI: https://doi.org/10.1002/hpm.3332
Amatya, P., Wagner, N., Chen, G., Luthra, P., et al. (2019). Inhibition of Marburg virus RNA synthesis by a synthetic anti-VP35 antibody. ACS Infectious Diseases, 5(8):1385-1396. doi: 10.1021/acsinfecdis.9b00091. DOI: https://doi.org/10.1021/acsinfecdis.9b00091
Amman, B. R., Schuh, A. J., Albariño, C. G., & Towner, J. S. (2021). Marburg virus persistence on fruit as a plausible route of bat to primate filovirus transmission. Viruses, 13(12), 2394. DOI: 10.3390/v13122394 DOI: https://doi.org/10.3390/v13122394
Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., et al. (2021). Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules. 26(6):1775. doi: 10.3390/molecules26061775. DOI: https://doi.org/10.3390/molecules26061775
Anywaine, Z., Barry, H., Anzala, O., Mutua, G., et al. (2022). Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola vaccination in children and adolescents in Africa: A randomised, placebo-controlled, multicentre Phase II clinical trial. PLOS Medicine, 19(1), e1003865. DOI: 10.1371/journal.pmed.1003865 DOI: https://doi.org/10.1371/journal.pmed.1003865
Asad, A., Aamir, A., Qureshi, N. E., Bhimani, S., et al. (2020). Past and current advances in Marburg virus disease: a review. Infez Med, 28(3):332-345.
Baby, B., Rajalakshmi R., Nair, M. M., & Roshni, P. R. (2022). Sagacious perceptive on Marburg virus foregrounding the recent findings: A critical review. Infectious Disorders Drug Targets. DOI: 10.2174/1871526522666220510103618. DOI: https://doi.org/10.2174/1871526522666220510103618
Bausch, D. G., Borchert, M., Grein, T., Roth, C., et al. (2003). Risk factors for Marburg hemorrhagic fever, Democratic Republic of the Congo. Emerging Infectious Diseases, 9(12), 1531-1537. DOI: 10.3201/eid0912.030355 DOI: https://doi.org/10.3201/eid0912.030355
Bradfute, S. B. (2022). The discovery and development of novel treatment strategies for filoviruses. Expert Opinion on Drug Discovery, 17(2):139-149. doi: 10.1080/17460441.2022.2013800. DOI: https://doi.org/10.1080/17460441.2022.2013800
Calder, P. C. (2022). Foods to deliver immune-supporting nutrients. Current Opinion in Food Science, 43, 136-145. doi: 10.1016/j.cofs.2021.12.006. DOI: https://doi.org/10.1016/j.cofs.2021.12.006
Chakraborty, S., Chandran, D., Mohapatra, R. K., Alagawany, M., et al. (2022). Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. International Journal of Surgery, 106847. doi: 10.1016/j.ijsu.2022.106847. DOI: https://doi.org/10.1016/j.ijsu.2022.106847
Cross, R. W., Bornholdt, Z. A., Prasad, A. N., Borisevich, V., et al. (2021). Combination therapy protects macaques against advanced Marburg virus disease. Nature Communications, 12(1), 1891. DOI: 10.1038/s41467-021-22132-0 DOI: https://doi.org/10.1038/s41467-021-22132-0
Cross, R. W., Mire, C. E., Feldmann, H., & Geisbert, T. W. (2018). Post-exposure treatments for Ebola and Marburg virus infections. Nature Reviews Drug Discovery, 17(6), 413-434. DOI: 10.1038/nrd.2017.251 DOI: https://doi.org/10.1038/nrd.2017.251
Daddario-DiCaprio, K. M., Geisbert, T. W., Ströher, U., Geisbert, J. B., et al. (2006). Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. The Lancet, 367(9520), 1399-1404. DOI: 10.1016/S0140-6736(06)68546-2 DOI: https://doi.org/10.1016/S0140-6736(06)68546-2
Dhama, K., Karthik, K., Khandia, R., Munjal, A., et al. (2018b). Medicinal and Therapeutic Potential of Herbs and Plant Metabolites / Extracts Countering Viral Pathogens - Current Knowledge and Future Prospects. Current Drug Metabolism, 19(3), 236-263. doi: 10.2174/1389200219666180129145252. DOI: https://doi.org/10.2174/1389200219666180129145252
Dhama, K., Karthik, K., Khandia, R., Chakraborty, S., et al. (2018a). Advances in designing and developing vaccines, drugs, and therapies to counter Ebola virus. Frontiers in Immunology, 9, 1803. doi: 10.3389/fimmu.2018.01803. DOI: https://doi.org/10.3389/fimmu.2018.01803
Dulin, N., Spanier, A., Merino, K., Hutter, J. N. , Waterman, P. E., Lee, C., & Hamer, M. J. (2021). Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine, 39(2), 202-208. doi: 10.1016/j.vaccine.2020.11.042. DOI: https://doi.org/10.1016/j.vaccine.2020.11.042
Fu, X., Wang, Z., Li, L., Dong, S., et al. (2016). Novel chemical ligands to Ebola virus and Marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Scientific Reports, 6, 29680. doi: 10.1038/srep29680. DOI: https://doi.org/10.1038/srep29680
Gordon, T. B., Hayward, J. A., Marsh, G. A., Baker, M. L., & Tachedjian, G. (2019). Host and viral proteins modulating Ebola and Marburg virus egress. Viruses, 11(1), 25. DOI: 10.3390/v11010025 DOI: https://doi.org/10.3390/v11010025
Hasan, M., Azim, K. F., Begum, A., Khan, N.A., et al. (2019). Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infection, Genetics and Evolution, 70, 140-157. doi: 10.1016/j.meegid.2019.03.003. DOI: https://doi.org/10.1016/j.meegid.2019.03.003
Hickman, M. R., Saunders, D. L., Bigger, C. A., Kane, C. D., & Iversen, P. L. (2022). The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections. PLoS Neglected Tropical Diseases, 16(3), e0010220. DOI: 10.1371/journal.pntd.0010220. DOI: https://doi.org/10.1371/journal.pntd.0010220
Hussain, Z. (2022). Ghana declares its first outbreak of Marburg virus disease after two deaths. British Medical Journal , 378, o1797. doi: 10.1136/bmj.o1797. DOI: https://doi.org/10.1136/bmj.o1797
Kortepeter, M. G., Bausch, D. G., & Bray, M. (2011). Basic clinical and laboratory features of filoviral hemorrhagic fever. The Journal of Infectious Diseases, 204(3), S810-S816. DOI: 10.1093/infdis/jir299 DOI: https://doi.org/10.1093/infdis/jir299
Kortepeter, M. G., Dierberg, K., Shenoy, E. S., Cieslak, T. J., & Medical Countermeasures Working Group of the National Ebola Training and Education Center's (NETEC) Special Pathogens Research Network (SPRN). (2020). Marburg virus disease: A summary for clinicians. International Journal of Infectious Diseases, 99, 233-242. DOI: 10.1016/j.ijid.2020.07.042 DOI: https://doi.org/10.1016/j.ijid.2020.07.042
Koundouno, F.R., Kafetzopoulou, L.E., Faye, M., Renevey, A., et al. (2022). Detection of Marburg virus disease in Guinea. The New England Journal of Medicine, 386(26), 2528-2530. DOI: 10.1056/NEJMc2120183 DOI: https://doi.org/10.1056/NEJMc2120183
Kumari, M., & Subbarao, N. (2022). A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors. Future Medicinal Chemistry, 14(10):701-715. doi: 10.4155/fmc-2021-0290. DOI: https://doi.org/10.4155/fmc-2021-0290
Lehrer, A. T., Chuang, E., Namekar, M., Williams, C. A., et al. (2021). Recombinant protein filovirus vaccines protect cynomolgus macaques from Ebola, Sudan, and Marburg viruses. Frontiers in Immunology, 12, 703986. DOI: 10.3389/fimmu.2021.703986 DOI: https://doi.org/10.3389/fimmu.2021.703986
Longini, I. M., Yang, Y., Fleming, T.R., Muñoz-Fontela, C., et al. (2022). A platform trial design for preventive vaccines against Marburg virus and other emerging infectious disease threats. Clinical Trials, 22, 17407745221110880. doi: 10.1177/ 17407745221110880. DOI: https://doi.org/10.1177/17407745221110880
Martin, B., Hoenen, T., Canard, B., & Decroly, E. (2016). Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Research, 135, 1-14. DOI: 10.1016/j.antiviral.2016.09.001 DOI: https://doi.org/10.1016/j.antiviral.2016.09.001
Marzi, A., Jankeel, A., Menicucci, A. R., Callison, J., et al. (2021). Single dose of a VSV-based vaccine rapidly protects macaques from Marburg virus disease. Frontiers in Immunology, 12, 774026. DOI: 10.3389/fimmu.2021.774026 DOI: https://doi.org/10.3389/fimmu.2021.774026
Mehedi, M., Groseth, A., Feldmann, H., & Ebihara, H. (2011). Clinical aspects of Marburg hemorrhagic fever. Future Virology, 6(9), 1091-1106. DOI: 10.2217/fvl.11.79 DOI: https://doi.org/10.2217/fvl.11.79
Miraglia, C. M. (2019). Marburgviruses: An update. Laboratory Medicine, 50(1), 16-28. DOI: 10.1093/labmed/lmy046 DOI: https://doi.org/10.1093/labmed/lmy046
Okonji, O. C., Okonji, E. F., Mohanan, P., Babar, M. S., et al. (2022). Marburg virus disease outbreak amidst COVID-19 in the Republic of Guinea: A point of contention for the fragile health system? (2022). Clinical Epidemiology and Global Health, 13, 100920. DOI: 10.1016/j.cegh.2021.100920 DOI: https://doi.org/10.1016/j.cegh.2021.100920
Olejnik, J., Mühlberger, E., & Hume, A. J. (2019). Recent advances in Marburg virus research, F1000Research, 8, 704. DOI: 10.12688/f1000research.17573.1 DOI: https://doi.org/10.12688/f1000research.17573.1
Park, S. W., Lee, Y. J., Lee, W. J., Jee, Y., & Choi, W. (2016). One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses. Osong Public Health and Research Perspectives, 7(3), 205-209. DOI: 10.1016/j.phrp.2016.04.004 DOI: https://doi.org/10.1016/j.phrp.2016.04.004
Racsa, L. D., Kraft, C. S., Olinger, G. G., & Hensley, L. E. (2016). Viral Hemorrhagic Fever Diagnostics. Clinical Infectious Diseases, 62(2), 214-219. DOI: 10.1093/cid/civ792 DOI: https://doi.org/10.1093/cid/civ792
Reynolds, P., & Marzi, A. (2017). Ebola and Marburg virus vaccines. Virus genes, 53(4), 501–515. https://doi.org/10.1007/ s11262-017-1455-x DOI: https://doi.org/10.1007/s11262-017-1455-x
Ristanović, E. S., Kokoškov, N. S., Crozier, I., Kuhn, J. H., & Gligić, A. S. (2020). A forgotten episode of Marburg Virus disease: Belgrade, Yugoslavia, 1967. Microbiology and Molecular Biology Reviews, 84(2), e00095-19. DOI: 10.1128/MMBR.00095-19 DOI: https://doi.org/10.1128/MMBR.00095-19
Sah, R., Mohanty, A., Reda, A., Siddiq, A., Mohapatra, R. K., & Dhama, K. (2022). Marburg virus re-emerged in 2022: Recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of monkeypox and ongoing COVID-19 pandemic- Global health concerns and counteracting measures. Veterinary Quarterly, 22:1-9. doi: 10.1080/01652176.2022.2116501. DOI: https://doi.org/10.1080/01652176.2022.2116501
Saied, A. A., Nascimento, M., do Nascimento Rangel, A. H., Skowron, K., et al. (2022). Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. Journal of medical virology, 94(10), 4599–4610. https://doi.org/10.1002/jmv.27907 DOI: https://doi.org/10.1002/jmv.27907
Sami, S. A., Marma, K. K. S., Mahmud, S., Khan, M. A. N., et al. (2021). Designing of a multi-epitope vaccine against the structural proteins of Marburg virus exploiting the immunoinformatics approach. ACS Omega, 6(47), 32043-32071. doi: 10.1021/acsomega.1c04817. DOI: https://doi.org/10.1021/acsomega.1c04817
Schuh, A. J., Amman, B. R., Jones, M. E., Sealy, T. K., et al. (2017). Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nature Communications, 8, 14446. DOI: 10.1038/ncomms14446. DOI: https://doi.org/10.1038/ncomms14446
Sebastian, S., Flaxman, A., Cha, K. M., Ulaszewska, M., et al. (2020). A Multi-Filovirus Vaccine Candidate: Co-Expression of Ebola, Sudan, and Marburg Antigens in a Single Vector. Vaccines (Basel), 8(2), 241. doi: 10.3390/vaccines8020241. DOI: https://doi.org/10.3390/vaccines8020241
Singh, R. K., Dhama, K., Malik, Y.S., Ramakrishnan, M. A., et al. (2017). Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Veterinary Quarterly, 37(1), 98-135. doi: 10.1080/01652176.2017.1309474. DOI: https://doi.org/10.1080/01652176.2017.1309474
Soltan, M. A., Abdulsahib, W. K., Amer, M., Refaat, A. M., et al. (2022). Mining of Marburg virus proteome for designing an epitope-based vaccine. Frontiers in Immumnology, 13, 907481. doi: 10.3389/fimmu.2022.907481. DOI: https://doi.org/10.3389/fimmu.2022.907481
Suschak, J. J., & Schmaljohn, C. S. (2019). Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Human Vaccines & Immunotherapeutics, 15(10), 2359-2377. doi: 10.1080/21645515.2019.1651140. DOI: https://doi.org/10.1080/21645515.2019.1651140
Tiwari, R., Latheef, S. K., Ahmed, I., Iqbal, H., et al. (2018). Herbal Immunomodulators - A Remedial Panacea for Designing and Developing Effective Drugs and Medicines: Current Scenario and Future Prospects. Current drug metabolism, 19(3), 264–301. https://doi.org/10.2174/1389200219666180129125436 DOI: https://doi.org/10.2174/1389200219666180129125436
Towner, J. S., Khristova, M. L., Sealy, T. K., Vincent, M. J., et al. (2006). Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. Journal of Virology, 80(13), 6497-6516. DOI: 10.1128/JVI.00069-06 DOI: https://doi.org/10.1128/JVI.00069-06
van Paassen, J., Bauer, M. P., Arbous, M. S., Visser, L. G., et al. (2012). Acute liver failure, multiorgan failure, cerebral oedema, and activation of proangiogenic and antiangiogenic factors in a case of Marburg haemorrhagic fever. The Lancet Infectious Diseases, 12(8), 635-642. DOI: 10.1016/S1473-3099(12)70018-X DOI: https://doi.org/10.1016/S1473-3099(12)70018-X
Warren, T. K., Wells, J., Panchal, R. G., Stuthman, K. S., et al. (2014). Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature, 508(7496), 402-405. DOI: 10.1038/nature13027 DOI: https://doi.org/10.1038/nature13027
WHO. (2021). Marburg virus disease. Retrieved from https://www.who.int/news-room/fact-sheets/detail/marburg-virus-disease.
WHO. (2022). Marburg virus- Ghana, 22 July, 2022. Retrieved from https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON402.
Wirsiy, F. S., Ako-Arrey, D. E., Nkfusai, C. N., Yeika, E. V., & Bain, L. E. (2021). Marburg virus disease outbreak in Guinea: a SPIN framework of its transmission and control measures for an exemplary response pattern in West Africa. The Pan African Medical Journal, 40, 143. DOI: 10.11604/pamj.2021.40.143.31709
Woolsey, C., Cross, R. W., Agans, K. N., Borisevich, V., et al.
(2022). A highly attenuated Vesiculovax vaccine rapidly protects nonhuman primates against lethal Marburg virus challenge. PLoS Neglected Tropical Diseases. 16(5), e0010433. doi: 10.1371/journal.pntd.0010433 DOI: https://doi.org/10.1371/journal.pntd.0010433
Yu, Z., Wu, H., Huang, Q., & Zhong, Z. (2021). Simultaneous detection of Marburg virus and Ebola virus with TaqMan-based multiplex real-time PCR method. Journal of Clinical and Laboratory Analysis, 35(6), e23786. DOI: 10.1002/jcla.23786. DOI: https://doi.org/10.1002/jcla.23786
Zhang, X., Liu, Q., Zhang, N., Li, Q. Q., et al. (2018). Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. European Journal of Medicinal Chemistry, 149, 45–55. https://doi.org/10.1016/j.ejmech.2018.02.061 DOI: https://doi.org/10.1016/j.ejmech.2018.02.061
Zhao, F., He, Y., & Lu, H. (2022). Marburg virus disease: A deadly rare virus is coming. Bioscience Trends, 10.5582/bst.2022.01333. Advance online publication. https://doi.org/10.5582/bst.2022.01333. DOI: https://doi.org/10.5582/bst.2022.01333
Zhu, W., Liu, G., Cao, W., He, S., et al. (2022). A cloned recombinant vesicular stomatitis virus-vectored Marburg Vaccine, PHV01, protects guinea pigs from lethal Marburg virus disease. Vaccines (Basel), 10(7), 1004. DOI: 10.3390/vaccines10071004 DOI: https://doi.org/10.3390/vaccines10071004
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.