Marburg Virus Disease – A Mini-Review

Authors

  • Sandip Chakraborty Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, Pin-799008, India https://orcid.org/0000-0002-2792-3281
  • Deepak Chandran Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita VishwaVidyapeetham University, Coimbatore – 642109, Tamil Nadu, India https://orcid.org/0000-0002-9873-6969
  • Ranjan K. Mohapatra Department of Chemistry, Government College of Engineering, Keonjhar-758002, Odisha, India https://orcid.org/0000-0001-7623-3343
  • Mahmoud Alagawany Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt https://orcid.org/0000-0002-8020-0971
  • Mohd Iqbal Yatoo Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India https://orcid.org/0000-0002-4501-7354
  • Md. Aminul Islam COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh https://orcid.org/0000-0003-1091-9726
  • Anil K. Sharma Department of Biotechnology, Maharishi Markandeshwar University (Deemed to be University) Mullana-Ambala-133207, Haryana, India https://orcid.org/0000-0002-9768-1644
  • Kuldeep Dhama Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh- 243122, India https://orcid.org/0000-0001-7469-4752

DOI:

https://doi.org/10.18006/2022.10(4).689.696

Keywords:

Marburg virus, Marburg virus disease, Bat, Zoonosis, Prevention and control

Abstract

Marburg virus disease (MVD) is a highly fatal disease caused by the Marburg virus (MARV) which belongs to the family Filoviridae. The disease has been recently reported from Ghana, an African country, and nearly 15 outbreaks of MVD have been reported in the past five decades. Various species of bats viz., Rousettus aegyptiacus, Hipposideros caffer, and certain Chiroptera act as the natural source of infection. Pathophysiology of the disease reveals severe antiviral suppression due to changes in gene expression and interferon-stimulated gene (ISG) production in the hepatic cells. With the progression of the disease, there may be the development of pain in the abdomen, nausea, vomition, pharyngitis, and diarrhea along with the onset of hemorrhagic manifestations which may lead to the death of a patient. The advent of molecular detection techniques and kits viz., reverse transcription polymerase chain reaction (RT-PCR) kit has greatly aided in the diagnosis of MVD. Identification of the virus in the specimen with great accuracy can be done by whole viral genome sequencing. The use of a combination of MR-186-YTE (monoclonal antibody) and an antiviral drug named remdesivir in the NHP model is greatly effective for eliminating MARV. The protective effect of a Vesicular stomatitis virus (VSV) (recombinant) - based vaccine expressing the glycoprotein of MARV has been revealed through animal model studies, other vaccines are also being developed. Proper health education, personal hygiene and precautions by health care workers while handling patients, good laboratory facilities and service along with the establishment of enhanced surveillance systems are the need of the hour to tackle this highly fatal disease. This article presents an overview of different aspects and salient features of MARV / MVD, and prevention and control strategies to be adopted.

References

Abir, M. H., Rahman, T., Das, A., Etu, S. N., et al. (2022). Pathogenicity and virulence of Marburg virus. Virulence, 13(1), 609-633. DOI:10.1080/21505594.2022.2054760 DOI: https://doi.org/10.1080/21505594.2022.2054760

Aborode, A. T., Wireko, A. A., Bel-Nono, K. N., Quarshie, L. S., Allison, M., & Bello, M. A. (2022). Marburg virus amidst COVID-19 pandemic in Guinea: Fighting within the looming cases. The International Journal of Health Planning and Management, 37(1), 553-555. DOI: 10.1002/hpm.3332 DOI: https://doi.org/10.1002/hpm.3332

Amatya, P., Wagner, N., Chen, G., Luthra, P., et al. (2019). Inhibition of Marburg virus RNA synthesis by a synthetic anti-VP35 antibody. ACS Infectious Diseases, 5(8):1385-1396. doi: 10.1021/acsinfecdis.9b00091. DOI: https://doi.org/10.1021/acsinfecdis.9b00091

Amman, B. R., Schuh, A. J., Albariño, C. G., & Towner, J. S. (2021). Marburg virus persistence on fruit as a plausible route of bat to primate filovirus transmission. Viruses, 13(12), 2394. DOI: 10.3390/v13122394 DOI: https://doi.org/10.3390/v13122394

Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., et al. (2021). Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules. 26(6):1775. doi: 10.3390/molecules26061775. DOI: https://doi.org/10.3390/molecules26061775

Anywaine, Z., Barry, H., Anzala, O., Mutua, G., et al. (2022). Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo Ebola vaccination in children and adolescents in Africa: A randomised, placebo-controlled, multicentre Phase II clinical trial. PLOS Medicine, 19(1), e1003865. DOI: 10.1371/journal.pmed.1003865 DOI: https://doi.org/10.1371/journal.pmed.1003865

Asad, A., Aamir, A., Qureshi, N. E., Bhimani, S., et al. (2020). Past and current advances in Marburg virus disease: a review. Infez Med, 28(3):332-345.

Baby, B., Rajalakshmi R., Nair, M. M., & Roshni, P. R. (2022). Sagacious perceptive on Marburg virus foregrounding the recent findings: A critical review. Infectious Disorders Drug Targets. DOI: 10.2174/1871526522666220510103618. DOI: https://doi.org/10.2174/1871526522666220510103618

Bausch, D. G., Borchert, M., Grein, T., Roth, C., et al. (2003). Risk factors for Marburg hemorrhagic fever, Democratic Republic of the Congo. Emerging Infectious Diseases, 9(12), 1531-1537. DOI: 10.3201/eid0912.030355 DOI: https://doi.org/10.3201/eid0912.030355

Bradfute, S. B. (2022). The discovery and development of novel treatment strategies for filoviruses. Expert Opinion on Drug Discovery, 17(2):139-149. doi: 10.1080/17460441.2022.2013800. DOI: https://doi.org/10.1080/17460441.2022.2013800

Calder, P. C. (2022). Foods to deliver immune-supporting nutrients. Current Opinion in Food Science, 43, 136-145. doi: 10.1016/j.cofs.2021.12.006. DOI: https://doi.org/10.1016/j.cofs.2021.12.006

Chakraborty, S., Chandran, D., Mohapatra, R. K., Alagawany, M., et al. (2022). Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. International Journal of Surgery, 106847. doi: 10.1016/j.ijsu.2022.106847. DOI: https://doi.org/10.1016/j.ijsu.2022.106847

Cross, R. W., Bornholdt, Z. A., Prasad, A. N., Borisevich, V., et al. (2021). Combination therapy protects macaques against advanced Marburg virus disease. Nature Communications, 12(1), 1891. DOI: 10.1038/s41467-021-22132-0 DOI: https://doi.org/10.1038/s41467-021-22132-0

Cross, R. W., Mire, C. E., Feldmann, H., & Geisbert, T. W. (2018). Post-exposure treatments for Ebola and Marburg virus infections. Nature Reviews Drug Discovery, 17(6), 413-434. DOI: 10.1038/nrd.2017.251 DOI: https://doi.org/10.1038/nrd.2017.251

Daddario-DiCaprio, K. M., Geisbert, T. W., Ströher, U., Geisbert, J. B., et al. (2006). Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. The Lancet, 367(9520), 1399-1404. DOI: 10.1016/S0140-6736(06)68546-2 DOI: https://doi.org/10.1016/S0140-6736(06)68546-2

Dhama, K., Karthik, K., Khandia, R., Munjal, A., et al. (2018b). Medicinal and Therapeutic Potential of Herbs and Plant Metabolites / Extracts Countering Viral Pathogens - Current Knowledge and Future Prospects. Current Drug Metabolism, 19(3), 236-263. doi: 10.2174/1389200219666180129145252. DOI: https://doi.org/10.2174/1389200219666180129145252

Dhama, K., Karthik, K., Khandia, R., Chakraborty, S., et al. (2018a). Advances in designing and developing vaccines, drugs, and therapies to counter Ebola virus. Frontiers in Immunology, 9, 1803. doi: 10.3389/fimmu.2018.01803. DOI: https://doi.org/10.3389/fimmu.2018.01803

Dulin, N., Spanier, A., Merino, K., Hutter, J. N. , Waterman, P. E., Lee, C., & Hamer, M. J. (2021). Systematic review of Marburg virus vaccine nonhuman primate studies and human clinical trials. Vaccine, 39(2), 202-208. doi: 10.1016/j.vaccine.2020.11.042. DOI: https://doi.org/10.1016/j.vaccine.2020.11.042

Fu, X., Wang, Z., Li, L., Dong, S., et al. (2016). Novel chemical ligands to Ebola virus and Marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Scientific Reports, 6, 29680. doi: 10.1038/srep29680. DOI: https://doi.org/10.1038/srep29680

Gordon, T. B., Hayward, J. A., Marsh, G. A., Baker, M. L., & Tachedjian, G. (2019). Host and viral proteins modulating Ebola and Marburg virus egress. Viruses, 11(1), 25. DOI: 10.3390/v11010025 DOI: https://doi.org/10.3390/v11010025

Hasan, M., Azim, K. F., Begum, A., Khan, N.A., et al. (2019). Vaccinomics strategy for developing a unique multi-epitope monovalent vaccine against Marburg marburgvirus. Infection, Genetics and Evolution, 70, 140-157. doi: 10.1016/j.meegid.2019.03.003. DOI: https://doi.org/10.1016/j.meegid.2019.03.003

Hickman, M. R., Saunders, D. L., Bigger, C. A., Kane, C. D., & Iversen, P. L. (2022). The development of broad-spectrum antiviral medical countermeasures to treat viral hemorrhagic fevers caused by natural or weaponized virus infections. PLoS Neglected Tropical Diseases, 16(3), e0010220. DOI: 10.1371/journal.pntd.0010220. DOI: https://doi.org/10.1371/journal.pntd.0010220

Hussain, Z. (2022). Ghana declares its first outbreak of Marburg virus disease after two deaths. British Medical Journal , 378, o1797. doi: 10.1136/bmj.o1797. DOI: https://doi.org/10.1136/bmj.o1797

Kortepeter, M. G., Bausch, D. G., & Bray, M. (2011). Basic clinical and laboratory features of filoviral hemorrhagic fever. The Journal of Infectious Diseases, 204(3), S810-S816. DOI: 10.1093/infdis/jir299 DOI: https://doi.org/10.1093/infdis/jir299

Kortepeter, M. G., Dierberg, K., Shenoy, E. S., Cieslak, T. J., & Medical Countermeasures Working Group of the National Ebola Training and Education Center's (NETEC) Special Pathogens Research Network (SPRN). (2020). Marburg virus disease: A summary for clinicians. International Journal of Infectious Diseases, 99, 233-242. DOI: 10.1016/j.ijid.2020.07.042 DOI: https://doi.org/10.1016/j.ijid.2020.07.042

Koundouno, F.R., Kafetzopoulou, L.E., Faye, M., Renevey, A., et al. (2022). Detection of Marburg virus disease in Guinea. The New England Journal of Medicine, 386(26), 2528-2530. DOI: 10.1056/NEJMc2120183 DOI: https://doi.org/10.1056/NEJMc2120183

Kumari, M., & Subbarao, N. (2022). A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors. Future Medicinal Chemistry, 14(10):701-715. doi: 10.4155/fmc-2021-0290. DOI: https://doi.org/10.4155/fmc-2021-0290

Lehrer, A. T., Chuang, E., Namekar, M., Williams, C. A., et al. (2021). Recombinant protein filovirus vaccines protect cynomolgus macaques from Ebola, Sudan, and Marburg viruses. Frontiers in Immunology, 12, 703986. DOI: 10.3389/fimmu.2021.703986 DOI: https://doi.org/10.3389/fimmu.2021.703986

Longini, I. M., Yang, Y., Fleming, T.R., Muñoz-Fontela, C., et al. (2022). A platform trial design for preventive vaccines against Marburg virus and other emerging infectious disease threats. Clinical Trials, 22, 17407745221110880. doi: 10.1177/ 17407745221110880. DOI: https://doi.org/10.1177/17407745221110880

Martin, B., Hoenen, T., Canard, B., & Decroly, E. (2016). Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Research, 135, 1-14. DOI: 10.1016/j.antiviral.2016.09.001 DOI: https://doi.org/10.1016/j.antiviral.2016.09.001

Marzi, A., Jankeel, A., Menicucci, A. R., Callison, J., et al. (2021). Single dose of a VSV-based vaccine rapidly protects macaques from Marburg virus disease. Frontiers in Immunology, 12, 774026. DOI: 10.3389/fimmu.2021.774026 DOI: https://doi.org/10.3389/fimmu.2021.774026

Mehedi, M., Groseth, A., Feldmann, H., & Ebihara, H. (2011). Clinical aspects of Marburg hemorrhagic fever. Future Virology, 6(9), 1091-1106. DOI: 10.2217/fvl.11.79 DOI: https://doi.org/10.2217/fvl.11.79

Miraglia, C. M. (2019). Marburgviruses: An update. Laboratory Medicine, 50(1), 16-28. DOI: 10.1093/labmed/lmy046 DOI: https://doi.org/10.1093/labmed/lmy046

Okonji, O. C., Okonji, E. F., Mohanan, P., Babar, M. S., et al. (2022). Marburg virus disease outbreak amidst COVID-19 in the Republic of Guinea: A point of contention for the fragile health system? (2022). Clinical Epidemiology and Global Health, 13, 100920. DOI: 10.1016/j.cegh.2021.100920 DOI: https://doi.org/10.1016/j.cegh.2021.100920

Olejnik, J., Mühlberger, E., & Hume, A. J. (2019). Recent advances in Marburg virus research, F1000Research, 8, 704. DOI: 10.12688/f1000research.17573.1 DOI: https://doi.org/10.12688/f1000research.17573.1

Park, S. W., Lee, Y. J., Lee, W. J., Jee, Y., & Choi, W. (2016). One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses. Osong Public Health and Research Perspectives, 7(3), 205-209. DOI: 10.1016/j.phrp.2016.04.004 DOI: https://doi.org/10.1016/j.phrp.2016.04.004

Racsa, L. D., Kraft, C. S., Olinger, G. G., & Hensley, L. E. (2016). Viral Hemorrhagic Fever Diagnostics. Clinical Infectious Diseases, 62(2), 214-219. DOI: 10.1093/cid/civ792 DOI: https://doi.org/10.1093/cid/civ792

Reynolds, P., & Marzi, A. (2017). Ebola and Marburg virus vaccines. Virus genes, 53(4), 501–515. https://doi.org/10.1007/ s11262-017-1455-x DOI: https://doi.org/10.1007/s11262-017-1455-x

Ristanović, E. S., Kokoškov, N. S., Crozier, I., Kuhn, J. H., & Gligić, A. S. (2020). A forgotten episode of Marburg Virus disease: Belgrade, Yugoslavia, 1967. Microbiology and Molecular Biology Reviews, 84(2), e00095-19. DOI: 10.1128/MMBR.00095-19 DOI: https://doi.org/10.1128/MMBR.00095-19

Sah, R., Mohanty, A., Reda, A., Siddiq, A., Mohapatra, R. K., & Dhama, K. (2022). Marburg virus re-emerged in 2022: Recently detected in Ghana, another zoonotic pathogen coming up amid rising cases of monkeypox and ongoing COVID-19 pandemic- Global health concerns and counteracting measures. Veterinary Quarterly, 22:1-9. doi: 10.1080/01652176.2022.2116501. DOI: https://doi.org/10.1080/01652176.2022.2116501

Saied, A. A., Nascimento, M., do Nascimento Rangel, A. H., Skowron, K., et al. (2022). Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. Journal of medical virology, 94(10), 4599–4610. https://doi.org/10.1002/jmv.27907 DOI: https://doi.org/10.1002/jmv.27907

Sami, S. A., Marma, K. K. S., Mahmud, S., Khan, M. A. N., et al. (2021). Designing of a multi-epitope vaccine against the structural proteins of Marburg virus exploiting the immunoinformatics approach. ACS Omega, 6(47), 32043-32071. doi: 10.1021/acsomega.1c04817. DOI: https://doi.org/10.1021/acsomega.1c04817

Schuh, A. J., Amman, B. R., Jones, M. E., Sealy, T. K., et al. (2017). Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nature Communications, 8, 14446. DOI: 10.1038/ncomms14446. DOI: https://doi.org/10.1038/ncomms14446

Sebastian, S., Flaxman, A., Cha, K. M., Ulaszewska, M., et al. (2020). A Multi-Filovirus Vaccine Candidate: Co-Expression of Ebola, Sudan, and Marburg Antigens in a Single Vector. Vaccines (Basel), 8(2), 241. doi: 10.3390/vaccines8020241. DOI: https://doi.org/10.3390/vaccines8020241

Singh, R. K., Dhama, K., Malik, Y.S., Ramakrishnan, M. A., et al. (2017). Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Veterinary Quarterly, 37(1), 98-135. doi: 10.1080/01652176.2017.1309474. DOI: https://doi.org/10.1080/01652176.2017.1309474

Soltan, M. A., Abdulsahib, W. K., Amer, M., Refaat, A. M., et al. (2022). Mining of Marburg virus proteome for designing an epitope-based vaccine. Frontiers in Immumnology, 13, 907481. doi: 10.3389/fimmu.2022.907481. DOI: https://doi.org/10.3389/fimmu.2022.907481

Suschak, J. J., & Schmaljohn, C. S. (2019). Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Human Vaccines & Immunotherapeutics, 15(10), 2359-2377. doi: 10.1080/21645515.2019.1651140. DOI: https://doi.org/10.1080/21645515.2019.1651140

Tiwari, R., Latheef, S. K., Ahmed, I., Iqbal, H., et al. (2018). Herbal Immunomodulators - A Remedial Panacea for Designing and Developing Effective Drugs and Medicines: Current Scenario and Future Prospects. Current drug metabolism, 19(3), 264–301. https://doi.org/10.2174/1389200219666180129125436 DOI: https://doi.org/10.2174/1389200219666180129125436

Towner, J. S., Khristova, M. L., Sealy, T. K., Vincent, M. J., et al. (2006). Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. Journal of Virology, 80(13), 6497-6516. DOI: 10.1128/JVI.00069-06 DOI: https://doi.org/10.1128/JVI.00069-06

van Paassen, J., Bauer, M. P., Arbous, M. S., Visser, L. G., et al. (2012). Acute liver failure, multiorgan failure, cerebral oedema, and activation of proangiogenic and antiangiogenic factors in a case of Marburg haemorrhagic fever. The Lancet Infectious Diseases, 12(8), 635-642. DOI: 10.1016/S1473-3099(12)70018-X DOI: https://doi.org/10.1016/S1473-3099(12)70018-X

Warren, T. K., Wells, J., Panchal, R. G., Stuthman, K. S., et al. (2014). Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature, 508(7496), 402-405. DOI: 10.1038/nature13027 DOI: https://doi.org/10.1038/nature13027

WHO. (2021). Marburg virus disease. Retrieved from https://www.who.int/news-room/fact-sheets/detail/marburg-virus-disease.

WHO. (2022). Marburg virus- Ghana, 22 July, 2022. Retrieved from https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON402.

Wirsiy, F. S., Ako-Arrey, D. E., Nkfusai, C. N., Yeika, E. V., & Bain, L. E. (2021). Marburg virus disease outbreak in Guinea: a SPIN framework of its transmission and control measures for an exemplary response pattern in West Africa. The Pan African Medical Journal, 40, 143. DOI: 10.11604/pamj.2021.40.143.31709

Woolsey, C., Cross, R. W., Agans, K. N., Borisevich, V., et al.

(2022). A highly attenuated Vesiculovax vaccine rapidly protects nonhuman primates against lethal Marburg virus challenge. PLoS Neglected Tropical Diseases. 16(5), e0010433. doi: 10.1371/journal.pntd.0010433 DOI: https://doi.org/10.1371/journal.pntd.0010433

Yu, Z., Wu, H., Huang, Q., & Zhong, Z. (2021). Simultaneous detection of Marburg virus and Ebola virus with TaqMan-based multiplex real-time PCR method. Journal of Clinical and Laboratory Analysis, 35(6), e23786. DOI: 10.1002/jcla.23786. DOI: https://doi.org/10.1002/jcla.23786

Zhang, X., Liu, Q., Zhang, N., Li, Q. Q., et al. (2018). Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. European Journal of Medicinal Chemistry, 149, 45–55. https://doi.org/10.1016/j.ejmech.2018.02.061 DOI: https://doi.org/10.1016/j.ejmech.2018.02.061

Zhao, F., He, Y., & Lu, H. (2022). Marburg virus disease: A deadly rare virus is coming. Bioscience Trends, 10.5582/bst.2022.01333. Advance online publication. https://doi.org/10.5582/bst.2022.01333. DOI: https://doi.org/10.5582/bst.2022.01333

Zhu, W., Liu, G., Cao, W., He, S., et al. (2022). A cloned recombinant vesicular stomatitis virus-vectored Marburg Vaccine, PHV01, protects guinea pigs from lethal Marburg virus disease. Vaccines (Basel), 10(7), 1004. DOI: 10.3390/vaccines10071004 DOI: https://doi.org/10.3390/vaccines10071004

Downloads

Published

2022-08-30

How to Cite

Chakraborty, S., Chandran, D., Mohapatra, R. K., Alagawany, M., Yatoo, M. I., Islam, M. A., Sharma, A. K., & Dhama, K. (2022). Marburg Virus Disease – A Mini-Review. Journal of Experimental Biology and Agricultural Sciences, 10(4), 689–696. https://doi.org/10.18006/2022.10(4).689.696

Issue

Section

REVIEW ARTICLES