Plant RNA-binding proteins as key players in abiotic stress physiology
DOI:
https://doi.org/10.18006/2023.11(1).41.53Keywords:
RNA-binding domains (RBDs), Abiotic stress, RNA binding proteins (RBPs), Stress response, ToleranceAbstract
Abiotic stress has a major effect on global crop production. Hence, plants have evolved and developed several response mechanisms to survive and grow under abiotic stresses. Plant cells can sense and respond to changes in different environmental stresses due to the specific modifications observed in gene expression, metabolism, and physiology. Only a few recognized sensors have been found due to the difficulty of functional redundancy in genes that code for sensor proteins. A defect in one gene causes no remarkable phenotypic changes in stress responses. Recent research has identified crucial RNA-binding proteins (RBPs) important for stimulus-specific responses. RBPs play a crucial part in plants’ growth and development, post-transcriptional gene regulation, and RNA metabolism induced during stress responses. Among the currently identified over 200 different RBPs, the majority of which are plant-specific and carry out plant-specific functions. As an essential component of plants’ adaptive process in different environmental conditions, RBPs regulate the following processes: RNA stability, RNA export, pre-mRNA splicing, polyadenylation, and chromatin modification. Plants have also developed different defense responses or molecular mechanisms to combat stress via genotypic and phenotypic expressions. With a unique understanding of RBPs in other organisms, RBPs functions in a plant are still limited. Hence, this review discusses the latest developments in RBPs function during the development and growth of plants, primarily under abiotic stress circumstances.
References
Abuqamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Cross-talk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal, 58(2), 347–360. https://doi.org/10.1111/j.1365-313X.2008.03783.x DOI: https://doi.org/10.1111/j.1365-313X.2008.03783.x
Afroz, T., Skrisovska, L., Belloc, E., Guillén-Boixet, J., Méndez, R., & Allain, F.H.T. (2014). A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes & Development, 28(13), 1498–1514. https://doi.org/10.1101/ gad.241133.114 DOI: https://doi.org/10.1101/gad.241133.114
Akilan, S., Halima, T.H., Sasi, S., Kappachery, S., Baniekal-Hiremath, G., Venkatesh, J., & Gururani, M.A. (2019). Evaluation of osmotic stress tolerance in transgenic Arabidopsis plants expressing Solanum tuberosum D200 gene. Journal of Plant Interactions, 14(1), 79–86. https://doi.org/10.1080/17429145.2018. 1555679 DOI: https://doi.org/10.1080/17429145.2018.1555679
Allan, A.C., & Fluhr, R. (2001). Ozone and Reactive Oxygen Species. Encyclopedia of Life Sciences, 1–4. https://doi.org/ 10.1038/npg.els.0001299 DOI: https://doi.org/10.1038/npg.els.0001299
Alsheikh, M.K., Heyen, B.J., & Randall, S.K. (2003). Ion Binding Properties of the Dehydrin ERD14 Are Dependent upon Phosphorylation. Journal of Biological Chemistry, 278(42), 40882–40889. https://doi.org/10.1074/jbc.M307151200 DOI: https://doi.org/10.1074/jbc.M307151200
Analyse ausgesuchter Studien, E. (2009). Der Einfluss des Klimawandels auf die terrestrischen Wassersysteme in Deutschland.
Bach-Pages, M., Castello, A., & Preston, G.M. (2017). Plant RNA Interactome Capture: Revealing the Plant RBPome. Trends in Plant Science, 22(6), 449–451. https://doi.org/10.1016/ j.tplants.2017.04.006 DOI: https://doi.org/10.1016/j.tplants.2017.04.006
Baltz, A.G., Munschauer, M., Schwanhäusser, B., Vasile, A., et al. (2012). The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts. Molecular cell, 46(5), 674–690. https://doi.org/10.1016/j.molcel.2012.05.021 DOI: https://doi.org/10.1016/j.molcel.2012.05.021
Banerjee, P. (2020). Plant Abiotic Stress Responses and MicroRNAs. In S. Maitra and B. Pramanick (eds) Advanced Agriculture (pp. 119-118), India, New Delhi Publishers, New Delhi. DOI: https://doi.org/10.30954/NDP-advagr.2020.6
Barta, A., Kalyna, M., & Reddy, A.S.N. (2010). Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. The Plant Cell, 22(9), 2926–2929. https://doi.org/10.1105/tpc.110.078352 DOI: https://doi.org/10.1105/tpc.110.078352
Bartoli, C.G., Casalongué, C.A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C.H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73–88. https://doi.org/10.1016/j.envexpbot.2012.05.003 DOI: https://doi.org/10.1016/j.envexpbot.2012.05.003
Begcy, K., Weigert, A., Egesa, A.O., & Dresselhaus, T. (2018). Compared to Australian Cultivars, European Summer Wheat (Triticum aestivum) Overreacts When Moderate Heat Stress Is Applied at the Pollen Development Stage. Agronomy, 8(7). https://doi.org/10.3390/agronomy8070099 DOI: https://doi.org/10.3390/agronomy8070099
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377. https://doi.org/ 10.1111/j.1461-0248.2011.01736.x DOI: https://doi.org/10.1111/j.1461-0248.2011.01736.x
Benešová, M., Holá, D., Fischer, L., Jedelský, P.L., et al. (2012). The physiology and proteomics of drought tolerance in Maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One, 7(6). https://doi.org/10.1371/ journal.pone.0038017 DOI: https://doi.org/10.1371/journal.pone.0038017
Blankenagel, S., Yang, Z., Avramova, V., Schön, C.C., & Grill, E. (2018). Generating plants with improved water use efficiency. Agronomy, 8(9). https://doi.org/10.3390/agronomy8090194 DOI: https://doi.org/10.3390/agronomy8090194
Boggs, J.Z., Loewy, K., Bibee, K., & Heschel, M.S. (2010). Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. Plant Growth Regulation, 60(2), 77–81. https://doi.org/10.1007/s10725-009-9427-3 DOI: https://doi.org/10.1007/s10725-009-9427-3
Bonhomme, L., Valot, B., Tardieu, F., & Zivy, M. (2012). Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Molecular & Cellular Proteomics, 11(10), 957–972. https://doi.org/10.1074/mcp.M111.015867 DOI: https://doi.org/10.1074/mcp.M111.015867
Bunnik, E.M., Batugedara, G., Saraf, A., Prudhomme, J., Florens, L., & Le Roch, K.G. (2016). The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biology, 17, 1–18. https://doi.org/10.1186/s13059-016-1014-0 DOI: https://doi.org/10.1186/s13059-016-1014-0
Castello, A., Horos, R., Strein, C., Fischer, B., Eichelbaum, K., Steinmetz, L.M., Krijgsveld, J., & Hentze, M.W. (2013). System-wide identification of RNA-binding proteins by interactome capture. Nature protocols, 8(3), 491–500. https://doi.org/ 10.1038/nprot.2013.020 DOI: https://doi.org/10.1038/nprot.2013.020
Chakrabortee, S., Boschetti, C., Walton, L.J., Sarkar, S., Rubinsztein, D.C., & Tunnacliffe, A. (2007). Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proceedings of the National Academy of Sciences, 104(46), 18073–18078. https://doi.org/10.1073/ pnas.0706964104 DOI: https://doi.org/10.1073/pnas.0706964104
Chang, Y. N., Zhu, C., Jiang, J., Zhang, H., Zhu, J. K., & Duan, C. G. (2020). Epigenetic regulation in plant abiotic stress responses. Journal of integrative plant biology, 62(5), 563-580. DOI: https://doi.org/10.1111/jipb.12901
Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867.https://doi.org/10.1111/tpj.13299 DOI: https://doi.org/10.1111/tpj.13299
Cléry, A., Blatter, M., & Allain, F. H. (2008). RNA recognition motifs: boring? Not quite. Current opinion in structural biology, 18(3), 290-298. https://doi.org/10.1016/j.sbi.2008.04.002 DOI: https://doi.org/10.1016/j.sbi.2008.04.002
Danquah, A., De Zélicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology advances, 32(1), 40-52. https://doi.org/10.1016/j.biotechadv.2013.09.006 DOI: https://doi.org/10.1016/j.biotechadv.2013.09.006
De Zélicourt, A., Colcombet, J., & Hirt, H. (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends in plant science, 21(8), 677-685. https://doi.org/10.1016/ j.tplants.2016.04.004 DOI: https://doi.org/10.1016/j.tplants.2016.04.004
Dresselhaus, T., & Hückelhoven, R. (2018). Biotic and abiotic stress responses in crop plants. Agronomy, 8(11), 8–13. https://doi.org/10.3390/agronomy8110267 DOI: https://doi.org/10.3390/agronomy8110267
Duque, P. (2011). A role for SR proteins in plant stress responses. Plant signaling & behavior, 6(1), 49-54. https://doi.org/10.4161/ psb.6.1.14063 DOI: https://doi.org/10.4161/psb.6.1.14063
Elbasyoni, I.S. (2018). Performance and stability of commercial wheat cultivars under terminal heat stress. Agronomy, 8. https://doi.org/10.3390/agronomy8040037 DOI: https://doi.org/10.3390/agronomy8040037
Farooq, M. A., Niazi, A. K., Akhtar, J., Farooq, M., Souri, Z., Karimi, N., & Rengel, Z. (2019). Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353-369. DOI: https://doi.org/10.1016/j.plaphy.2019.04.039
Fedoroff, N. V. (2002). RNA-binding proteins in plants: The tip of an iceberg? Current Opinion in Plant Biology, 5, 452–459. https://doi.org/10.1016/S1369-5266(02)00280-7 DOI: https://doi.org/10.1016/S1369-5266(02)00280-7
Filichkin, S.A., Priest, H.D., Givan, S.A., Shen, R., et al. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20, 45–58. https://doi.org/10.1101/ gr.093302.109 DOI: https://doi.org/10.1101/gr.093302.109
Fu, L., Wang, P., & Xiong, Y. (2020). Target of rapamycin signaling in plant stress responses. Plant Physiology, 182(4), 1613-1623. DOI: https://doi.org/10.1104/pp.19.01214
Garcia-Moreno, M., Noerenberg, M., Ni, S., Järvelin, A.I., et al. (2019). System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 74, 196-211.e11. https://doi.org/10.1016/j.molcel.2019.01.017 DOI: https://doi.org/10.1016/j.molcel.2019.01.017
Glisovic, T., Bachorik, J.L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 582, 1977–1986. https://doi.org/10.1016/ j.febslet.2008.03.004 DOI: https://doi.org/10.1016/j.febslet.2008.03.004
Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., et al. (2008). The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. The Plant Journal, 55, 526–542. https://doi.org/ 10.1111/j.1365-313X.2008.03510.x DOI: https://doi.org/10.1111/j.1365-313X.2008.03510.x
Gururani, M.A., Ganesan, M., Song, I.J., Han, Y., Kim, J.I., Lee, H.Y., & Song, P.S. (2016). Transgenic Turfgrasses Expressing Hyperactive Ser599Ala Phytochrome A Mutant Exhibit Abiotic Stress Tolerance. Journal of Plant Growth Regulation, 35, 11-21. https://doi.org/10.1007/s00344-015-9502-0 DOI: https://doi.org/10.1007/s00344-015-9502-0
Gururani, M.A., Ganesan, M., & Song, P.S. (2015a). Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnol. Advances, 33 (1), 53-63. https://doi.org/10.1016/ j.biotechadv.2014.12.005 DOI: https://doi.org/10.1016/j.biotechadv.2014.12.005
Gururani, M. A., Mohanta, T.K., & Bae, H. (2015a). Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16, 19055–19085. https://doi.org/10.3390/ ijmsl60819055 DOI: https://doi.org/10.3390/ijms160819055
Gururani, M.A., Venkatesh, J., Ganesan, M., Strasser, R.J., Han, Y., Kim, J.I., Lee, H.Y., & Song, P.S. (2015b). In Vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. PLoS One, 10. https://doi.org/10.1371/journal.pone.0127200 DOI: https://doi.org/10.1371/journal.pone.0127200
Gururani, M. A., Venkatesh, J., & Tran, L.S.P., (2015b). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304–1320. https://doi.org/10.1016/j.molp.2015.05.005 DOI: https://doi.org/10.1016/j.molp.2015.05.005
Hentze, M.W., Castello, A., Schwarzl, T., & Preiss, T. (2018). A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 19, 327–341. https://doi.org/10.1038/ nrm.2017.130 DOI: https://doi.org/10.1038/nrm.2017.130
Hu, L., Wang, Z., Du, H., & Huang, B. (2010). Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology, 167, 103–109. https://doi.org/10.1016/j.jplph.2009.07.008 DOI: https://doi.org/10.1016/j.jplph.2009.07.008
Iida, K., & Go, M. (2006). Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Molecular Biology and Evolution, 23, 1085–1094. https://doi.org/10.1093/ molbev/msj118 DOI: https://doi.org/10.1093/molbev/msj118
Jangpromma, N., Kitthaisong, S., Lomthaisong, K., Daduang, S., Jaisil, P., & Thammasirirak, S. (2010). A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars. American Journal of Biochemistry and Biotechnology, 6, 89–102. https://doi.org/10.3844/ ajbbsp.2010.89.102 DOI: https://doi.org/10.3844/ajbbsp.2010.89.102
Jung, H. J., Park, S. J., & Kang, H. (2013). Regulation of RNA metabolism in plant development and stress responses. Journal of Plant Biology, 56(3), 123-129. DOI: https://doi.org/10.1007/s12374-013-0906-8
Khalid, M. F., Hussain, S., Ahmad, S., Ejaz, S., et al. (2019). Impacts of abiotic stresses on growth and development of plants. In M. Hasanuzzaman, M. Fujita, H. Oku, M. T. Islam (eds) Plant tolerance to environmental stress (pp. 1-8). CRC Press. DOI: https://doi.org/10.1201/9780203705315-1
Kimotho, R.N., Baillo, E.H., & Zhang, Z. (2019). Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ , 1–46. https://doi.org/10.7717/peerj.7211 DOI: https://doi.org/10.7287/peerj.preprints.27549v1
Koh, J., Chen, G., Yoo, M.J., Zhu, N., Dufresne, D., Erickson, J.E., Shao, H., & Chen, S. (2015). Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress. Journal of Proteome Research, 14, 3068–3081. https://doi.org/10.1021/ pr501323d DOI: https://doi.org/10.1021/pr501323d
Köster, T., Reichel, M., & Staiger, D. (2020). CLIP and RNA interactome studies to unravel genome-wide RNA-protein interactions in vivo in Arabidopsis thaliana. Methods (San Diego, Calif.), 178, 63–71. https://doi.org/10.1016/j.ymeth.2019.09.005 DOI: https://doi.org/10.1016/j.ymeth.2019.09.005
Lazar, G., & Goodman, H.M. (2000). The Arabidopsis splicing factor SR1 is regulated by alternative splicing. Plant Molecular Biology, 42, 571–581. https://doi.org/10.1023/A:1006394207479 DOI: https://doi.org/10.1023/A:1006394207479
Lee, K., & Kang, H. (2016). Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Molecular Cells, 39, 179–185. https://doi.org/10.14348/ molcells.2016.2359 DOI: https://doi.org/10.14348/molcells.2016.2359
Lee, K., & Kang, H. (2020). Roles of organellar RNA-binding proteins in plant growth, development, and abiotic stress responses. International Journal of Molecular Sciences, 21, 45-48. doi: 10.3390/ijms21124548 DOI: https://doi.org/10.3390/ijms21124548
Linder, P., & Jankowsky, E. (2011). From unwinding to clamping ĝ€" the DEAD box RNA helicase family. Nature Reviews Molecular Cell Biology, 12, 505–516. https://doi.org/10.1038/ nrm3154 DOI: https://doi.org/10.1038/nrm3154
Longman, D., Johnstone, I.L., & Cáceres, J.F. (2000). Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO Journal, 19, 1625–1637. https://doi.org/10.1093/ emboj/19.7.1625 DOI: https://doi.org/10.1093/emboj/19.7.1625
Lueong, S., Merce, C., Fischer, B., Hoheisel, J.D., & Erben, E.D. (2016). Gene expression regulatory networks in Trypanosoma brucei: Insights into the role of the mRNA-binding proteome. Molecular Microbiology, 100, 457–471. https://doi.org/10.1111/ mmi.13328 DOI: https://doi.org/10.1111/mmi.13328
Lunde, B.M., Moore, C., & Varani, G. (2007). RNA-binding proteins: Modular design for efficient function. Nature Reviews Molecular Cell Biology, 8, 479–490. https://doi.org/10.1038/ nrm2178 DOI: https://doi.org/10.1038/nrm2178
Ma, Y., Dai, X., Xu, Y., Luo, W., et al. (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221. https://doi.org/10.1016/j.cell.2015.01.046 DOI: https://doi.org/10.1016/j.cell.2015.01.046
Manley, J.L., & Krainer, A.R. (2010). A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes & Development, 24, 1073–1074. https://doi.org/10.1101/ gad.1934910.apparent DOI: https://doi.org/10.1101/gad.1934910
Marondedze, C. (2020). The increasing diversity and complexity of the RNA-binding protein repertoire in plants. Proceedings of the Royal Society B, 287(1935), 20201397. DOI: https://doi.org/10.1098/rspb.2020.1397
Marondedze, C., Thomas, L., Gehring, C., & Lilley, K.S. (2019). Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC Plant Biology, 19, 1–11. https://doi.org/10.1186/s12870-019-1750-x DOI: https://doi.org/10.1186/s12870-019-1750-x
Marondedze, C., Thomas, L., Serrano, N.L., Lilley, K.S., & Gehring, C. (2016). The RNA-binding protein repertoire of Arabidopsis thaliana. Scientific Reports, 6, 1–13. https://doi.org/10.1038/srep29766 DOI: https://doi.org/10.1038/srep29766
Messerer, M., Lang, D., & Mayer, K. F. (2018). Analysis of stress resistance using next generation techniques. Agronomy, 8(8), 130. DOI: https://doi.org/10.3390/agronomy8080130
Molassiotis, A., & Fotopoulos, V. (2011). Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signaling and Behavior, 6, 210–214. https://doi.org/10.4161/ psb.6.2.14878 DOI: https://doi.org/10.4161/psb.6.2.14878
Muthusamy, M., Kim, J. H., Kim, J. A., & Lee, S. I. (2021). Plant RNA binding proteins as critical modulators in drought, high salinity, heat, and cold stress responses: An updated overview. International Journal of Molecular Sciences, 22(13), 6731. DOI: https://doi.org/10.3390/ijms22136731
Munns, R., Day, D.A., Fricke, W., Watt, M., et al. (2020). Energy costs of salt tolerance in crop plants. New Phytologist, 225, 1072–1090. https://doi.org/10.1111/nph.15864 DOI: https://doi.org/10.1111/nph.15864
Mustroph, A. (2018). Improving flooding tolerance of crop plants. Agronomy, 8, https://doi.org/10.3390/agronomy8090160 DOI: https://doi.org/10.3390/agronomy8090160
Nadeem, M., Li, J., Wang, M., Shah, L., Lu, S., Wang, X., & Ma, C. (2018). Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. Agronomy, 8, 128. https://doi.org/10.3390/agronomy8070128 DOI: https://doi.org/10.3390/agronomy8070128
Palusa, S.G., Ali, G.S., & Reddy, A.S.N. (2007). Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: Regulation by hormones and stresses. The Plant Journal, 49, 1091–1107. https://doi.org/10.1111/j.1365-313X.2006.03020.x DOI: https://doi.org/10.1111/j.1365-313X.2006.03020.x
Park, S.C., Kim, Y.H., Jeong, J.C., Kim, C.Y., Lee, H.S., Bang, J.W., & Kwak, S.S. (2011). Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta, 233, 621–634. https://doi.org/10.1007/s00425-010-1326-3 DOI: https://doi.org/10.1007/s00425-010-1326-3
Perez-Perri, J.I., Rogell, B., Schwarzl, T., Stein, F., Zhou, Y., Rettel, M., Brosig, A., & Hentze, M.W. (2018). Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nature Communications, 9, https://doi.org/10.1038/s41467-018-06557-8 DOI: https://doi.org/10.1038/s41467-018-06557-8
Pettigrew, W.T., Kim, Farhat, N., Ivanov, A.G., Krol, M., Rabhi, M., Smaoui, A., Abdelly, C., & Hüner, N.P.A. (2015). Guard Cell Signal Transduction Network. Physiologia Plantarum, 133, 670–681. https://doi.org/10.1146/annurev-arplant-042809-112226.Guard
Raghavendra, A.S., Gonugunta, V.K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15, 395–401. https://doi.org/10.1016/j.tplants.2010.04.006 DOI: https://doi.org/10.1016/j.tplants.2010.04.006
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268–3273. https://doi.org/10.1073/pnas.1222463110 DOI: https://doi.org/10.1073/pnas.1222463110
Saibo, N.J.M., Lourenço, T., & Oliveira, M.M. (2009). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103, 609–623. https://doi.org/10.1093/aob/mcn227 DOI: https://doi.org/10.1093/aob/mcn227
Sangwan, V., Örvar, B.L., Beyerly, J., Hirt, H., & Dhindsa Rajinder, S., (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal, 31, 629–638. https://doi.org/10.1046/j.1365-313X.2002.01384.x DOI: https://doi.org/10.1046/j.1365-313X.2002.01384.x
Sawicka, K., Bushell, M., Spriggs, K.A., & Willis, A.E. (2008). Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochemical Society Transactions, 36, 641–647. https://doi.org/10.1042/BST0360641 DOI: https://doi.org/10.1042/BST0360641
Scharf, K.D., Berberich, T., Ebersberger, I., & Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1819, 104–119. https://doi.org/10.1016/ j.bbagrm.2011.10.002 DOI: https://doi.org/10.1016/j.bbagrm.2011.10.002
Shabala, S., & Munns, R. (2017). Salinity stress: physiological constraints and adaptive mechanisms. In Plant stress physiology (pp. 24-63). Wallingford UK: Cabi. DOI: https://doi.org/10.1079/9781780647296.0024
Singh, J., & Thakur, J.K. (2018). Photosynthesis and Abiotic Stress in Plants. In S. Vats (eds) Biotic and Abiotic Stress Tolerance in Plants (pp. 27–46), Singapore, Springer. https://doi.org/10.1007/ 978-981-10-9029-5 DOI: https://doi.org/10.1007/978-981-10-9029-5_2
Stepanova, A.N., & Alonso, J.M. (2009). Ethylene signaling and response: where different regulatory modules meet. Current Opinion in Plant Biology, 12, 548–555. https://doi.org/10.1016/ j.pbi.2009.07.009 DOI: https://doi.org/10.1016/j.pbi.2009.07.009
Suzuki, M., Kato, A., & Komeda, Y. (2000). An RNA-binding protein, AtRBP1, is expressed in actively proliferative regions in Arabidopsis thaliana. Plant and Cell Physiology, 41, 282–288. https://doi.org/10.1093/pcp/41.3.282 DOI: https://doi.org/10.1093/pcp/41.3.282
Sysoev, V. O., Fischer, B., Frese, C. K., Gupta, I., Krijgsveld, J., Hentze, M. W., Castello, A., & Ephrussi, A. (2016). Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nature communications, 7, 12128. https://doi.org/10.1038/ncomms12128 DOI: https://doi.org/10.1038/ncomms12128
Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition?. Trends in plant science, 13(4), 178–182. https://doi.org/10.1016/j.tplants.2008.01.005 DOI: https://doi.org/10.1016/j.tplants.2008.01.005
Tanabe, N., Yoshimura, K., Kimura, A., Yabuta, Y., & Shigeoka, S. (2007). Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant & Cell Physiology, 48, 1036–1049. https://doi.org/10.1093/pcp/pcm069 DOI: https://doi.org/10.1093/pcp/pcm069
Téllez, S.R., Kanhonou, R., Bellés, C.C., Serrano, R., Alepuz, P., & Ros, R. (2020). RNA-binding proteins as targets to improve salt stress tolerance in crops. Agronomy, 10, 1–17. https://doi.org/ 10.3390/agronomy10020250 DOI: https://doi.org/10.3390/agronomy10020250
Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M.W., & Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 176, 391-403.e19. https://doi.org/10.1016/j.cell.2018.11.004 DOI: https://doi.org/10.1016/j.cell.2018.11.004
Valverde, R., Edwards, L., & Regan, L. (2008). Structure and function of KH domains. The FEBS Journal, 275, 2712–2726. https://doi.org/10.1111/j.1742-4658.2008.06411.x DOI: https://doi.org/10.1111/j.1742-4658.2008.06411.x
Varghese, N., Alyammahi, O., Nasreddine, S., Alhassani, A., & Gururani, M. A. (2019). Melatonin Positively Influences the Photosynthetic Machinery and Antioxidant System of Avena sativa during Salinity Stress. Plants (Basel, Switzerland), 8(12), 610. https://doi.org/10.3390/plants8120610 DOI: https://doi.org/10.3390/plants8120610
Vogel, J.P., Garvin, D.F., Mockler, T.C., Schmutz, J., et al. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–768. https://doi.org/10.1038/nature08747 DOI: https://doi.org/10.1038/nature08747
Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, cell & environment, 33(4), 510–525. https://doi.org/10.1111/j.1365-3040.2009.02052.x DOI: https://doi.org/10.1111/j.1365-3040.2009.02052.x
Woloshen, V., Huang, S., & Li, X. (2011). RNA-Binding Proteins in Plant Immunity. Journal of pathogens, 2011, 278697. https://doi.org/10.4061/2011/278697 DOI: https://doi.org/10.4061/2011/278697
Wurzinger, B., Mair, A., Pfister, B., & Teige, M. (2011). Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant signaling & behavior, 6(1), 8–12. https://doi.org/10.4161/psb.6.1.14012 DOI: https://doi.org/10.4161/psb.6.1.14012
Xiong, X., Chang, L., Khalid, M., Zhang, J., & Huang, D. (2018). Alleviation of Drought Stress by Nitrogen Application in Brassica campestris ssp. Chinensis L. Agronomy, 8, 1–15. https://doi.org/10.3390/agronomy8050066 DOI: https://doi.org/10.3390/agronomy8050066
Yan, Y., Gan, J., Tao, Y., Okita, T. W., & Tian, L. (2022). RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. Frontiers in plant science, 13, 882596. https://doi.org/10.3389/fpls.2022.882596. DOI: https://doi.org/10.3389/fpls.2022.882596
Yuan, F., Yang, H., Xue, Y., Kong, D., et al. (2014). OSCA1
mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 514(7522), 367–371. https://doi.org/10.1038/nature13593 DOI: https://doi.org/10.1038/nature13593
Zhao, J., Lu, Z., Wang, L., & Jin, B. (2020). Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. International journal of molecular sciences, 22(1), 117. https://doi.org/10.3390/ijms22010117. DOI: https://doi.org/10.3390/ijms22010117
Zhao, C., Liu, B., Piao, S., Wang, X., et al. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114 DOI: https://doi.org/10.1073/pnas.1701762114
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.