Elucidation of the morpho-physiological traits of maize (Zea mays L.) under salt stress
DOI:
https://doi.org/10.18006/2022.10(6).1441.1452Keywords:
Maize, Salt stress, Morpho- physiological traits, Respiration, TranspirationAbstract
Agriculture is an essential sector for the increasing world population, hence the need for more food production. However, the aim of increasing food crop production is mostly suppressed by abiotic stresses such as drought and salinity. Salinity is a major limiting factor that inhibits the potential of plant growth and productivity worldwide. Hence, understanding the mechanisms behind plant stress response is important for developing new biomarker approaches that will increase salt tolerance in crops. To survive, plants exhibit various morphological, physiological, and biochemical processes when faced with saline conditions. This study was carried out to explore and evaluate the morphological and physiological effects of salinity on maize grown in the absence/presence of NaCl, followed by measurement of the various growth parameters at the end of a treatment cycle. Results of the study revealed that salt stress significantly decreased growth parameters such as plant height, leaf number, leaf width, leaf area, leaf length, and shoot (weight and length). On the other hand, salinity decreased physiological traits such as stomatal count, stomatal density, transpiration, and respiration rates. This study has shown the negative effects of salt stress on the morphology and physiology of maize. These findings can be used as a reference tool in stress response studies focusing on salt stress pathways in maize and other related crops.
References
AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7, 276. DOI: https://doi.org/10.3389/fpls.2016.00276
Alam. M., Juraimi, A.S., Rafil, M.Y., Hamid, A.A., Aslani, F., & Hakim, M.A. (2016). Salinity induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biological Research, 49(24), 1-19. DOI: https://doi.org/10.1186/s40659-016-0084-5
Alkahtani, J. S. (2018). Identification and characterization of salinity tolerance genes by activation tagging inArabidopsis, MSc Dissertation, University of Arkansas, Fayetteville.
Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Drought stress in maize (Zea mays L.) Effects, resistance mechanisms, global achievements and biological strategies for improvement. Cham: Springer. https://doi.org/10.1007/978-3-319-25442-5. DOI: https://doi.org/10.1007/978-3-319-25442-5
Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23-58. DOI: https://doi.org/10.1080/07352680590910410
Camargo, M.A.B., & Marenco, R.A., (2011). Density, size and distribution of stomata in 35 rainforest tree species in Ccentral Aamazonia. Acta Amazonica, 41(2), 205-212. DOI: https://doi.org/10.1590/S0044-59672011000200004
Chinnusamy, V., Jagendorf, A., Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437-448. DOI: https://doi.org/10.2135/cropsci2005.0437
Dikobe, T. B., Mashile, B., Sinthumule, R. R., & Ruzvidzo, O. (2021). Distinct Morpho-Physiological Responses of Maize to Salinity Stress. American Journal of Plant Sciences, 12(6), 946-959. DOI: https://doi.org/10.4236/ajps.2021.126064
El Sayed, H. E. S. A. (2011). Influence of salinity stress on growth parameters, photosynthetic activity and cytological studies of Zea mays, L. plant using hydrogel polymer. Agriculture and Biology Journal of North America, 2(6), 907-920. DOI: https://doi.org/10.5251/abjna.2011.2.6.907.920
Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461-481. DOI: https://doi.org/10.1007/s13593-015-0287-0
Galmés, J., Pou, A., Alsina, M. M., Tomas, M., Medrano, H., & Flexas, J. (2007). Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta, 226(3), 671-681. DOI: https://doi.org/10.1007/s00425-007-0515-1
Gill, K. S., & Dutt, S. K. (1982). Effect of salinity on stomatal number, size and opening in barley genotypes. Biologia Plantarum, 24(4), 266-269. DOI: https://doi.org/10.1007/BF02879457
Gurbanov, E. M., & Molazem, D. (2009). Effects of saline stress on growth and crop yield of different maize (Zea mays) genotypes. Biosystems Diversity, 2(17), 9-14. DOI: https://doi.org/10.15421/010938
Hala, G. E. A., Sahar, F. E. H., Mohammed, A. N., & Nabil, I. E. (2020). Comparative studies between growth regulators and nanoparticles on growth and mitotic index of pea plants under salinity. African Journal of Biotechnology, 19(8), 564-575. DOI: https://doi.org/10.5897/AJB2020.17198
Huang, W., Su, X., Ratkowsky, D. A., Niklas, K. J., Gielis, J., & Shi, P. (2019). The scaling relationships of leaf biomass vs. leaf surface area of 12 bamboo species. Global Ecology and Conservation, 20, e00793. DOI: https://doi.org/10.1016/j.gecco.2019.e00793
Hussain, M., Park, H. W., Farooq, M., Jabran, K., & Lee, D. J. (2013). Morphological and Physiological Basis of Salt Resistance in Different Rice Genotypes. International Journal of Agriculture & Biology, 15(1), 1560-8530
Hussein, M. M., Balbaa, L. K., & Gaballah, M. S. (2007). Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences, 3(4), 321-328.
Iqbal, S., Hussain, S., Qayyaum, M. A. , Ashraf, M., & Saifullah, S. (2020). The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. In A. Hossain (Ed.), Plant Stress Physiology. IntechOpen. https://doi.org/10.5772/intechopen.92213. DOI: https://doi.org/10.5772/intechopen.92213
Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35-42. DOI: https://doi.org/10.1007/s13213-015-1112-3
Khatoon, T., Hussain, K., Majeed, A., Nawaz, K., & Nisar, M. F. (2010). Morphological variations in maize (Zea mays L.) under different levels of NaCl at germinating stage. World Applied Sciences Journal, 8(10), 1294-1297.
Khodarahmpour, Z., Ifar, M., & Motamedi, M. (2012). Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11(2), 298-304. DOI: https://doi.org/10.5897/AJB11.2624
Khosravinejad, F., Heydari, R., & Farboodnia, T. (2008). Effects of salinity on photosynthetic pigments, respiration, and water content in two barley varieties. Pakistan Journal of Biological Sciences, 11(20), 2438-2442. DOI: https://doi.org/10.3923/pjbs.2008.2438.2442
Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance—current assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134. DOI: https://doi.org/10.1061/JRCEA4.0001137
Maas, E. V., Hoffman, G. J., Chaba, G. D., Poss, J. A., & Shannon, M. C. (1983). Salt sensitivity of corn at various growth stages. Irrigation Science, 4(1), 45-57. DOI: https://doi.org/10.1007/BF00285556
Mansour, M. M. F., Salama, K. H. A., Ali, F. Z. M., & Abou Hadid, A. F. (2005). Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology, 31(1-2), 29-41.
Moud, A. M., &Maghsoudi, K. (2008). Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences, 4(3), 351-358.
Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytologist, 208(3), 668-673. DOI: https://doi.org/10.1111/nph.13519
Musa, U. T., & Hassan, U. T. (2016). Leaf area determination for maize (Zea mays L.), okra (Abelmoschus esculentus L.) and cowpea (Vigna unguiculata L.) crops using linear measurements. Journal of Biology, Agriculture and Healthcare, 6(4), 104-111.
Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8), 807-815. DOI: https://doi.org/10.1016/j.jplph.2010.11.001
Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. DOI: https://doi.org/10.1093/aob/mcw191
Pholo, M. (2009). Morphological, physiological and yield response of maize (Zea mays L.) to seed treatments. Doctoral dissertation, University of the Free State, South Africa.
Rafique, S., Abdin, M. Z., & Alam, W. (2020). Response of combined abiotic stresses on maize (Zea mays L.) inbred lines and interaction among various stresses. Maydica, 64(3), 8.
Ramezani, E., Sepanlou, M. G., & Badi, H. A. N. (2011). The effect of salinity on the growth, morphology and physiology of Echium amoenum Fisch. &Mey. African Journal of Biotechnology, 10(44), 8765-8773. DOI: https://doi.org/10.5897/AJB10.2301
El Sabagh, A., Çiğ, F., Seydoşoğlu, S., Battaglia, M. L., Javed, T., Iqbal, M. A., &Awad, M. (2021). Salinity stress in maize: Effects of stress and recent developments of tolerance for improvement. Cereal Grains, 1, 213. DOI: https://doi.org/10.5772/intechopen.98745
Shekhar, M., & Singh, N. (2021). The Impact of Climate Change on Changing Pattern of Maize Diseases in Indian Subcontinent: A Review. In M. A. El-Esawi (Ed.), Maize Genetic Resources - Breeding Strategies and Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.101053 DOI: https://doi.org/10.5772/intechopen.101053
Singh, R., Ahirwar, N. K., Tiwari, J., & Pathak, J. (2018). Review on sources and effect of heavy metal in soil: Its bioremediation. International Journal of Research in Applied,
Natural and Social Sciences, 2018, 1-22.
Singhal, R. K., Saha, D., Skalicky, M., Mishra, U. N., et al. (2021). Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. Frontiers in plant science, 12, 670369. https://doi.org/10.3389/fpls.2021.670369 DOI: https://doi.org/10.3389/fpls.2021.670369
Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., & Dubinsky, Z. (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68(1), 15-28. DOI: https://doi.org/10.1016/S0304-3770(00)00106-6
Voleníková, M., &Tichá, I. (2001). Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets. Biologia Plantarum, 44(2), 161-165. DOI: https://doi.org/10.1023/A:1017982619635
Wakeel, A., Asif, A. R., Pitann, B., & Schubert, S. (2011). Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. Journal of Plant Physiology, 168(6), 519-526. DOI: https://doi.org/10.1016/j.jplph.2010.08.016
Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317-3325. DOI: https://doi.org/10.1093/jxb/ern185
Zadeh, H.M.,&Naeini, M.B. (2007). Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). Journal of Agronomy, 6, 409-414. DOI: https://doi.org/10.3923/ja.2007.409.414
Zhu, Z., Chen, J., & Zheng, H. L. (2012). Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiology, 32(11), 1378-1388. DOI: https://doi.org/10.1093/treephys/tps097
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.