Comparative analysis of antioxidant activities of Vitex negundo and Ficus carica leaf extracts

Authors

  • Anjali Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology Lakshmangarh, 332311, Sikar, Rajasthan, India https://orcid.org/0000-0002-5334-8196
  • Navneet Joshi Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology Lakshmangarh, 332311, Sikar, Rajasthan, India https://orcid.org/0000-0003-0155-3785

DOI:

https://doi.org/10.18006/2023.11(1).97.104

Keywords:

Antioxidant activities, Vitex negundo, Ficus carica, DPPH assay, FRAP assay

Abstract

Humans have been dependent on nature for various vital supplies and resources for a long time. Most biotechnological and pharmacological industries use chemicals and active compounds to treat diseases or make medications isolated from natural resources. A variety of plants have been explored for research of which Vitex negundo and Ficus carica are also examples as they are strong candidates for their potential antioxidant properties. In the current research, the anti-oxidant activities of V. negundo and F. carica leaf extracts were evaluated. The antioxidant activities of selected plants were analyzed using DPPH and FRAP assay. The results obtained from the DPPH assay indicated that methanolic extracts of V. negundo showed the highest inhibition of 90.07±1.17 percent at 1000 µl with IC50 value of 415.98 µg/ml followed by ethyl acetate and chloroform extracts (64.05±0.89 and 54.39±0.99 percent, respectively) with IC50 value of 751.96 µg/ml and 896.55 µg/ml when compared to F. carica extracts which showed highest inhibition of 75.75±1.08 percent at 1000 µl with IC50 value of 475 µg/ml followed by ethyl acetate and chloroform extracts (51.94±0.79 and 44.21±0.60 percent respectively) with IC50 value of  967.51 µg/ml and 1092.48 µg/ml. On comparing both plants, FRAP results indicated that methanol extracts of V. negundo showed the highest FRAP value (1042.1±0.98 µM) followed by ethyl acetate and chloroform extracts, which shows 996.6±1.25 µM and 949.6±1.63 µM at 1000 µl whereas F. carica showed highest FRAP value (995.6±1.35µM) followed by ethyl acetate and chloroform extracts, which shows 987.6±1.05µM and 447.6±1.01µM at 1000 µl. The results of the study can be concluded that among the tested extracts, the best antioxidant potential was exhibited with V. negundo leaf extracts, especially in methanol extracts.

References

Adhikari, Y. P., Bhandari, P., Adhikari, D. M., & Kunwar, R. M. (2023). Ficus species (Ficus auriculata Lour., Ficus benghalensis L., Ficus carica L., Ficus religiosa L., Ficus semicordata Buch. Ham.exSm). In T. Belwal, I. Bhatt, & H. Devkota, (Eds.) Himalayan Fruits and Berries (pp. 171-182), Academic Press. https://doi.org/10.1016/B978-0-323-85591-4.00030-1. DOI: https://doi.org/10.1016/B978-0-323-85591-4.00030-1

Ahmad, J., Khan, I., Khan, S. & Iqbal, D. (2013). Evaluation of Antioxidant and Antimicrobial Activity of Ficus carica Leaves: an in-vitro approach. Journal of Plant Pathology and Microbiology, 4(1), 1000157.

Ayoub, L., Hassan, F., Hamid, S., Abdelhamid, Z., & Souad, A. (2019). Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation, 15, 226 - 232. DOI: https://doi.org/10.6026/97320630015226

Bakar, U.A., Subramaniam, P., Bashah, N.A., Kamalrudin, A. et al. (2020). Sperm Proteomics Analysis of Diabetic Induced Male Rats as Influenced by Ficus carica Leaf Extract. Processes, 8(4), 395. DOI: https://doi.org/10.3390/pr8040395

Barolo, M. I., Ruiz Mostacero, N., & López, S. N. (2014). Ficus carica L. (Moraceae): an ancient source of food and health. Food chemistry, 164, 119–127. https://doi.org/10.1016/j.foodchem.2014.04.112 DOI: https://doi.org/10.1016/j.foodchem.2014.04.112

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Ginting, C.N., Lister, I.N.E., Girsang, E., Riastawati, D., Kusuma, H.S.W., Wahyu Widowati, W. (2020). Antioxidant activities of Ficus elastica leaves ethanol extract and its compounds. Molecular and Cellular Biomedical Sciences, 4(1), 27-33. DOI: https://doi.org/10.21705/mcbs.v4i1.86

Gupta, D. (2005). Phytochemical investigation and pharmacological evaluation of medicinal plants for anti-microbial, anti-oxidant, anti-inflammatory activities and nephrotoxicity. Ph.D thesis submitted to the University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India.

Hasani, P., Yasa, N., Vosough-Ghanbari, S., Mohammadirad, A., Dehghan, G., & Abdollahi, M. (2007). In vivo antioxidant potential of Teucrium polium, as compared to α-tocopherol. Acta Pharmaceutica, 57, 123-9. DOI: https://doi.org/10.2478/v10007-007-0010-z

Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food chemistry, 108(3), 986–995. https://doi.org/10.1016/j.foodchem.2007.12.010. DOI: https://doi.org/10.1016/j.foodchem.2007.12.010

Kadir, F. A., Kassim, N. M., Abdulla, M. A., & Yehye, W. A. (2013). PASS-predicted Vitex negundo activity: antioxidant and antiproliferative properties on human hepatoma cells--an in vitro study. BMC complementary and alternative medicine, 13, 343. https://doi.org/10.1186/1472-6882-13-343. DOI: https://doi.org/10.1186/1472-6882-13-343

Le, D., Han, S., Ahn, J., Yu, J., Kim, C. K., & Lee, M. (2022). Analysis of Antioxidant Phytochemicals and Anti-Inflammatory Effect from Vitex rotundifolia L.f. Antioxidants (Basel, Switzerland), 11(3), 454. https://doi.org/10.3390/antiox11030454. DOI: https://doi.org/10.3390/antiox11030454

Li, Z., Yang, Y., Liu, M., Zhang, C., Shao, J., Hou, X., Tian, J., & Cui, Q. (2021). A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 137, 111393. https://doi.org/10.1016/ j.biopha.2021.111393. DOI: https://doi.org/10.1016/j.biopha.2021.111393

Liao, K., & Yin, M. (2000). Individual and combined antioxidant effects of seven phenolic agents in human erythrocyte membrane ghosts and phosphatidylcholine liposome systems: importance of the partition coefficient. Journal of agricultural and food chemistry, 48(6), 2266–2270. https://doi.org/10.1021/jf990946w. DOI: https://doi.org/10.1021/jf990946w

Liu, C., Tseng, A., & Yang, S. (2005). Chinese herbal medicine: Modern applications of traditional formulas. CRC Press.

Mata, A. T, Proença, C., Ferreira, A. R., Serralheiro, M. L. M., Nogueira, J. M. F., & Araújo, M. E. M. (2007). Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food chemistry, 103(3), 778-786. DOI: https://doi.org/10.1016/j.foodchem.2006.09.017

Moffo Foning, L., Fombang, Édith, & Clergé, T. (2022). Evaluation of Antioxidant Potentialities of Whole Fruit Juices from Ximenia americana Linn., Vitex doniana Sweet. and Annona senegalensis Pers. The Indian Journal of Nutrition and Dietetics, 59 (3), 255-274. DOI: https://doi.org/10.21048/IJND.2022.59.3.29266

Noguchi, N., & Niki, E. (2019). Chemistry of active oxygen species and antioxidants. In A.M. Papas (ed.) Antioxidant status, diet, nutrition, and health (pp. 1-20), Boca Raton, CRC Press. DOI: https://doi.org/10.1201/9780367811099-1

Oliveira, A. P., Silva, L. R., Andrade, P. B., Valentão, P., Silva, B. M., Gonçalves, R. F., Pereira, J. A., & Guedes de Pinho, P. (2010). Further insight into the latex metabolite profile of Ficus carica. Journal of agricultural and food chemistry, 58(20), 10855–10863. https://doi.org/10.1021/jf1031185 DOI: https://doi.org/10.1021/jf1031185

Perveen, S., Khan, M. A., Parveen, R., Insaf, A., Parveen, B., Ahmad, S., & Husain, S. A. (2023). An Updated Review on Traditional and Modern Aspects of Vitex negundo. Current Traditional Medicine, 9(2), 114-127. DOI: 10.2174/2215083808666220827115915. DOI: https://doi.org/10.2174/2215083808666220827115915

Pinipay, F., Rokkam, R., Bollavarapu, A., Rapaka, G., & Tamanam, R.R. (2022). Phytochemical Screening of Ficus religiosa Seeds and Evaluation of its Antioxidant Potential. Journal of Food Chemistry & Nanotechnology, 8(3), 127-137.

Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of agricultural and food chemistry, 48(8), 3396–3402. https://doi.org/10.1021/jf9913458. DOI: https://doi.org/10.1021/jf9913458

Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed research international, 2014, 761264. https://doi.org/10.1155/2014/761264. DOI: https://doi.org/10.1155/2014/761264

Sabbagh, F., & Kim, B. S. (2022). Recent advances in polymeric transdermal drug delivery systems. Journal of controlled release: official journal of the Controlled Release Society, 341, 132–146. https://doi.org/10.1016/j.jconrel.2021.11.025. DOI: https://doi.org/10.1016/j.jconrel.2021.11.025

Soni, N., Mehta, S., Satpathy, G. & Gupta, R.K. (2014). Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficuscarica). Journal of Pharmacognosy and Phytochemistry, 3(2), 158-165.

Tandon, V. R. (2005). Medicinal uses and biological activities of Vitexnegundo. NISCAIR Online Periodicals Repository, 4(3), 162-165.

Taviano, M. F., Rashed, K., Filocamo, A., Cacciola, F., et al. (2018). Phenolic profile and biological properties of the leaves of Ficus vasta Forssk. (Moraceae) growing in Egypt. BMC complementary and alternative medicine, 18(1), 161. https://doi.org/10.1186/s12906-018-2210-0. DOI: https://doi.org/10.1186/s12906-018-2210-0

Teruel-Andreu, C., Sendra, E., Hernández, F., & Cano-Lamadrid, M. (2023). How Does Cultivar Affect Sugar Profile, Crude Fiber, Macro-and Micronutrients, Total Phenolic Content, and Antioxidant Activity on Ficus carica Leaves. Agronomy, 13(1), 30. DOI: https://doi.org/10.3390/agronomy13010030

Traore, K.F., Kone, K.Y., Ahi, A.P. et al. (2021) Phenolic compounds characterisation and antioxidant activity of black plum (Vitex doniana) fruit pulp and peel from Côte d’Ivoire. Food Measure, 15, 1281–1293. https://doi.org/10.1007/s11694-020-00719-3. DOI: https://doi.org/10.1007/s11694-020-00719-3

Vijayalakshmi, N., & Rao, M.R.K. (2020). Preliminary Phytochemical and Antioxidant Studies of Leaf extracts of one Medicinal plant, Vitex negundo. Research Journal of Pharmacy and Technology, 13(5), 2167-2173. DOI: https://doi.org/10.5958/0974-360X.2020.00390.X

Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of clinical pathology, 54(3), 176–186. https://doi.org/10.1136/jcp.54.3.176. DOI: https://doi.org/10.1136/jcp.54.3.176

Zargar, M.A., Azizah, A.H., Roheeyati, A.M., Fatimah, A.B., Jahanshiri, F., & Pak-Dek, M.S. (2011). Bioactive compounds and antioxidant activity of different extracts from Vitex negundo leaf. Journal of Medicinal Plants Research, 5(12), 2525-2532.

Downloads

Published

2023-02-28

How to Cite

Anjali, & Joshi, N. (2023). Comparative analysis of antioxidant activities of Vitex negundo and Ficus carica leaf extracts. Journal of Experimental Biology and Agricultural Sciences, 11(1), 97–104. https://doi.org/10.18006/2023.11(1).97.104

Issue

Section

RESEARCH ARTICLES

Categories