Antioxidant Potential of Chloranthus erectus (Chloranthaceae) from various solvents extract

Authors

  • Izzaz Hafiezy Zemry Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Nor’ Aishah Hasan Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Nur Intan Hasbullah Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Mohd Zaini Nawahwi Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Azzreena Mohamad Azzeme Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
  • Siti Noor Dina Ahmad Faculty of Science Computer and Mathematic, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
  • Suhaidi Ariffin Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia

DOI:

https://doi.org/10.18006/2023.11(1).75.80

Keywords:

Chloranthus erectus, Chloranthaceae, Antioxidant activity, Phytochemical, Total phenolic content

Abstract

Chloranthus erectus is a herbaceous plant that has been used as a medicinal plant in several regions such as China and Southeast Asia. Although it possesses valuable medicinal properties, till now there is not much research has been carried out on the medicinal properties of this plant and the knowledge of this plant is limited among the research fertility. Therefore, this study aimed to identify the phytochemicals, total phenolic content (TPC), and antioxidant activity of leaf and twig of C. erectus in various solvents extract (hexane, petroleum ether, chloroform, ethyl acetate, and methanol). Phytochemical screening of extracts showed the presence of alkaloids, flavonoids, terpenoids, saponins, quinones, glycosides, and steroids. The highest phenolic content for leaf and twig samples was determined from the methanolic (9.64 ± 0.15 µg GAE/g) and hexanoic extract (7.39 ± 0.27 µg GAE/g), respectively. Meanwhile, the highest antioxidant activity was reported from the methanolic extract of both leaf (88.36 ± 0.24%) and twig (91.25 ± 0.10%) samples. Hence, the results of the study can be concluded that C. erectus has the potential to become a good natural antioxidant and the information from this study can be utilized by the communities as well as other researchers.

References

Balasubramaniam, G., Sekar, M., & Badami, S. (2020). Pharmacognostical, Physicochemical and Phytochemical Evaluation of Strobilanthes kunthianus (Acanthaceae). Pharmacognosy Journal, 12(4), 731-741. DOI: https://doi.org/10.5530/pj.2020.12.106

Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., &Yi-Hsu, J. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22, 296-302. DOI: https://doi.org/10.1016/j.jfda.2013.11.001

Gema, M., Marlon, R., Joel, D., Fatima, R., & Silvia, L. (2020). Effect of ethanol and methanol on the total phenolic content and antioxidant capacity of chia seeds (Salvia hispanica L.). Sains Malaysiana, 49(6), 1283-1292. http://dx.doi.org/10.17576/jsm-2020-4906-06 DOI: https://doi.org/10.17576/jsm-2020-4906-06

Huyut, Z., Beydemir, S., & Gülçin, I. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 1 10. https://doi.org/10.1155/2017/7616791 DOI: https://doi.org/10.1155/2017/7616791

Keshav, A., Sharma, A., & Mazumdar, B. (2019). Phytochemical Analysis and Antioxidant Activity of Colocasia esculenta (L.) Leaves. International Journal of Chemical and Molecular Engineering, 13(1): 20-23.

Kiew, R., Chung, R.C.K., Saw, L.G., Soepadmo, E. & Boyce, P.C. (2010). Flora of Peninsular Malaysia, Series II: Seed Plants, Volume 1. Forest Research Institute Malaysia (FRIM), Malaysia. pp. 329.

Kiew, R., UmmulNazrah, A.R., Ong, P.T., Kamin, I., Aliaa-Athirah, A.M. & Rafidah, A.R. (2019). Distribution and Conservation Implications of Limestone Plant Species in FELDA Chiku Limestone Flora, Kelantan, Malaysia. Journal of Tropical Forest Science 31 (1), 19-36 DOI: https://doi.org/10.26525/jtfs2019.31.1.019036

Kornienko, J.S., Smirnova, I.S., Pugovkina, N.A., Ivanova, J.S., et al. (2019) High doses of synthetic antioxidant induce premature senescence in cultivated mesenchymal stem cell. Scientific Reports, 9, 1296 (2019). https://doi.org/10.1038/s41598-018-37972-7 DOI: https://doi.org/10.1038/s41598-018-37972-y

Kuntorini, E. M., Nugroho, L. H., Maryani, & Nuringtyas, T. R. (2022). Maturity effect on the antioxidant activity of leaves and fruits of Rhodomyrtus tomentosa (Aiton.) Hassk. AIMS Agriculture and Food, 7(2), 282-296. https://doi.org/10.3934/agrfood.2022018 DOI: https://doi.org/10.3934/agrfood.2022018

Madiha, I., Rukayadi, Y., & Norhayati, H. (2016).Effects of extraction conditions on yield, total phenolic contents, and antibacterial activity of methanolic Cinnamomum zeylanicum Blume leaves extract. International Food Research Journal, 24(2), 779-786.

Masuku, N. P., Unuofin, J. O., & Lebelo, S. L. (2020). Phytochemical content, antioxidant activities and androgenic properties of four South African medicinal plants. Journal of Herbmed Pharmacology, 9(3), 245-256. DOI: https://doi.org/10.34172/jhp.2020.32

Mohandas, G. G., & Kumaraswamy, M. (2018). Antioxidant activity of terpenoids from Thuidium tamariscellum (C.Muell.) Boshc. and Sanda-Lac. a Moss. Pharmacogsny Journal, 10(4), 645-649. DOI: https://doi.org/10.5530/pj.2018.4.106

Nawaz, H., Aslam Shad, M., Rehman, N., Andaleeb, H., & Ullah, N. (2019). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazillian Journal of Pharmaceutical Sciences, 56, 1-9. DOI: https://doi.org/10.1590/s2175-97902019000417129

Romes, N. B., Hamid, M. A., Hashim, S. E., & Wahab, R. A. (2019). Statistical modelling of ultrasonic-aided extraction of Elaeisguineensis leaves of better-quality yield and total phenolic content. Indonesian Journal of Chemistry, 19(3), 811-826. DOI: https://doi.org/10.22146/ijc.41603

Shaikh, J. R., & Patil, M. (2020). Qualitative Tests for Preliminary Phytochemical Screening: An Overview. International Journal of Chemical Studies, 8(2), 603–608. DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Simao, A. A., Santos, M. A., Fraguas, R. M., Braga, M. A., et al. (2013). Antioxidant and chlorophyll in cassava leaves at three plant ages. African Journal of Agriculture Research, 8(28), 3724-3730. https://doi.org/10.5897/AJAR2013.6746 DOI: https://doi.org/10.5897/AJAR2013.6746

Tzima, K., Brunton, N. P., & Rai, D. K. (2018). Qualitative and quantitative analysis of polyphenol in Lamiaceae plant – A review. Plants, 7(25), 1-30. https://doi.org/10.3390/plants7020025 DOI: https://doi.org/10.3390/plants7020025

Vivi Mardina, Halimatussakdiah, Harmawan. T., Ilyas, S., Tanjung, M., Aulya, W., & Annisyah Nasution, A. (2020) Preliminary phytochemical screening of different solvent extracts of flower and whole plant of Wedelia biflora. IOP Conference Series: Materials Science and Engineering, Volume 725, 3rd Nommensen International Conference on Technology and Engineering 2019 (3rd NICTE) 25–26 July 2019, Nommensen HKBP University, Indonesia. DOI 10.1088/1757-899X/725/1/012077. DOI: https://doi.org/10.1088/1757-899X/725/1/012077

Wang, A., Song, H., An, H., Huang, Q., Luo, X., & Dong, J. (2015). Secondary metabolites of plants from the genus Chloranthus: chemistry and biological activities. Chemistry & Biodiversity, 12, (2015), 451-473. DOI: https://doi.org/10.1002/cbdv.201300376

Xu, H., Liao, H., Zou, M., Zhao, Y., et al. (2020). Antibacterial and antiproliferative activities in Chloranthus henryi. Science of Advance Material, 12 (1), 144 151.:https://doi.org/10.1166/ sam.2020.3684 DOI: https://doi.org/10.1166/sam.2020.3684

Zhang, M, Liu, D, Fan, Q, Wang, R, Lu, X, Gu, Y & Shi, Q, W. (2016). Constituents from Chloranthaceae plants and their biological activities. Heterocyclic Communication, 22 (4): https://doi.org/10.1515/hc-2016-0084 DOI: https://doi.org/10.1515/hc-2016-0084

Zheng, W., & Wang, Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agriculture and Food Chemistry, 49, 5165-5170. DOI: https://doi.org/10.1021/jf010697n

Downloads

Published

2023-02-28

How to Cite

Zemry, I. H., Hasan, N. A., Hasbullah, N. I., Nawahwi, M. Z., Mohamad Azzeme, A., Ahmad, S. N. D., & Ariffin, S. (2023). Antioxidant Potential of Chloranthus erectus (Chloranthaceae) from various solvents extract. Journal of Experimental Biology and Agricultural Sciences, 11(1), 75–80. https://doi.org/10.18006/2023.11(1).75.80

Issue

Section

RESEARCH ARTICLES

Categories