Techniques of Bioremediation using bacteria for the treatment of polycyclic aromatic hydrocarbons: A Review

Authors

  • Anuja Mishra Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura, U.P., India
  • Rasanpreet Kaur Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura, U.P., India

DOI:

https://doi.org/10.18006/2022.10(6).1318.1330

Keywords:

Hydrocarbons, Polycyclic aromatic hydrocarbons, Computational aspects, Databases, Molecular docking, Synthetic biology

Abstract

The term "hydrocarbon" is self-explanatory and refers to solely carbon and hydrogen compounds. Hydrocarbons play an important role in our everyday lives. Hydrocarbons, particularly polycyclic aromatic hydrocarbons, harm biota. The relatively fast introduction of xenobiotic compounds, as well as the enormous movement of natural materials to various environmental compartments, can often overwhelm the self-cleaning capabilities of the recipient ecosystem, resulting in pollution and accumulation of hazardous or even lethal levels. Bacteria capable of hydrocarbon degradation are frequently used in the bioremediation of fuel oil-contaminated sites. Presently, multiple sophisticated methodologies, transcriptomics, proteomics and are effectively utilized for the depiction of hydrocarbons degrading microorganisms. These expertises are highly developed, and its integration with bioinformatics tools makes it even more efficient. Though health science and biological science are the major relevant areas for molecular docking, it has been effectively used to explore the process of bio-degradation in ecological remediation in recent years. This review focuses on the sources, fate of PAHs, human exposure, various computational aspects associated with PAHs, and some approaches of synthetic biology related to pollutant degradation and PAH‑degradation by genetically engineered microorganisms.

References

Adams, B. L. (2016). The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synthetic Biology, 5(12), 1328-1330. DOI: https://doi.org/10.1021/acssynbio.6b00256

Al-Thani, R. F., Abd-El-Haleem, D. A., & Al-Shammri, M. (2009). Isolation and characterization of polyaromatic hydrocarbons-degrading bacteria from different Qatari soils. African Journal of Microbiology Research, 3(11), 761-766.

Arun, A., Raja, P. P., Arthi, R., Ananthi, M., Kumar, K. S., & Eyini, M. (2008). Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Applied Biochemistry and Biotechnology, 151(2), 132-142. DOI: https://doi.org/10.1007/s12010-008-8160-0

Bhatt, P., Zhou, X., Huang, Y., Zhang, W., & Chen, S. (2021). Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of hazardous materials, 411, 125026. https://doi.org/10.1016/ j.jhazmat.2020.125026 DOI: https://doi.org/10.1016/j.jhazmat.2020.125026

Bidoia, E. D., Montagnolli, R. N., & Lopes, P. R. M. (2010). Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. Applied Microbiology and Biotechnology, 7, 1277-1288.

Cao, L., Wang, Q., Zhang, J., Li, C., Yan, X., Lou, X., et al. (2012). Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World Journal of Microbiology and Biotechnology, 28(9), 2783-2790. DOI: https://doi.org/10.1007/s11274-012-1088-0

Carbajosa, G., Trigo, A., Valencia, A., & Cases, I. (2009). Bionemo: molecular information on biodegradation metabolism. Nucleic acids research, 37(suppl_1), D598-D602. DOI: https://doi.org/10.1093/nar/gkn864

Chen, S., Chang, C., Deng, Y., An, S., Dong, Y. H., Zhou, J., et al. (2014). Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. Journal of agricultural and food chemistry, 62(10), 2147-2157. DOI: https://doi.org/10.1021/jf404908j

Chen, W., Zhang, Y., Zhang, Y., Pi, Y., Gu, T., Song, L., et al. (2018). CRISPR/Cas9-based genome editing in Pseudomonas aeruginosa and cytidine deaminase-mediated base editing in Pseudomonas species. IScience, 6, 222-231. DOI: https://doi.org/10.1016/j.isci.2018.07.024

Chung, J. Y., Cho, S. J., & Hah, J. M. (2011). A python-based docking program utilizing a receptor bound ligand shape: PythDock. Archives of Pharmacal Research, 34(9), 1451-1458. DOI: https://doi.org/10.1007/s12272-011-0906-5

Dhar, D., Roy, S., & Nigam, V. K. (2019). Advances in protein/enzyme-based biosensors for the detection of pharmaceutical contaminants in the environment. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants (pp. 207-229). Elsevier. https://doi.org/10.1016/ B978-0-12-814679-8.00010-8. DOI: https://doi.org/10.1016/B978-0-12-814679-8.00010-8

Enríquez, P. (2016). Genome editing and the jurisprudence of scientific empiricism. Vanderbilt journal of entertainment & technology, 19, 603.

Fathepure, B. Z. (2014). Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Frontiers in microbiology, 5, 173. DOI: https://doi.org/10.3389/fmicb.2014.00173

Filonov, A. E., Akhmetov, L. I., Puntus, I. F., Esikova, T. Z., et al. (2005). The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiology, 74(4), 453-458. DOI: https://doi.org/10.1007/s11021-005-0088-6

Foght, J. (2008). Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. Microbial Physiology, 15(2-3), 93-120. DOI: https://doi.org/10.1159/000121324

Gbeddy, G., Egodawatta, P., Goonetilleke, A., Ayoko, G., & Chen, L. (2020). Application of quantitative structure-activity relationship (QSAR) model in comprehensive human health risk assessment of PAHs, and alkyl-, nitro-, carbonyl-, and hydroxyl-PAHs laden in urban road dust. Journal of hazardous materials, 383, 121154. DOI: https://doi.org/10.1016/j.jhazmat.2019.121154

Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in microbiology, 7, 1369. https://doi.org/10.3389/fmicb.2016.01369 DOI: https://doi.org/10.3389/fmicb.2016.01369

Gong, T., Liu, R., Zuo, Z., Che, Y., Yu, H., Song, C., & Yang, C. (2016). Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane. ACS synthetic biology, 5(5), 434-442. DOI: https://doi.org/10.1021/acssynbio.6b00025

Govarthanan, M., Khalifa, A. Y., Kamala-Kannan, S., Srinivasan, P., Selvankumar, T., Selvam, K., & Kim, W. (2020). Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere, 243, 125389. DOI: https://doi.org/10.1016/j.chemosphere.2019.125389

Guerra, A. B., Oliveira, J. S., Silva-Portela, R. C., Araújo, W., et al. (2018). Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environmental pollution, 235, 869-880. DOI: https://doi.org/10.1016/j.envpol.2018.01.014

Ha, H., Park, K., Kang, G., & Lee, S. (2019). QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology, 28(3), 333-342. DOI: https://doi.org/10.1007/s10646-019-02025-1

Haider, F. U., Wang, X., Zulfiqar, U., Farooq, M., et al. (2022). Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. Ecotoxicology and Environmental Safety, 248, 114322. DOI: https://doi.org/10.1016/j.ecoenv.2022.114322

Huang, Y., Lin, Z., Zhang, W., Pang, S., et al. (2020). New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms, 8(4), 473. DOI: https://doi.org/10.3390/microorganisms8040473

Hussein, R. A., Al-Ghanim, K. A., Abd-El-Atty, M. M., & Mohamed, L. A. (2016). Contamination of Red Sea Shrimp (Palaemon serratus) with Polycyclic Aromatic Hydrocarbons: a Health Risk Assessment Study. Polish Journal of Environmental Studies, 25(2), 615-620. DOI: https://doi.org/10.15244/pjoes/60767

Jain, A. N. (2007). Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. Journal of computer-aided molecular design, 21(5), 281-306. DOI: https://doi.org/10.1007/s10822-007-9114-2

Jawaid, M. (Ed.). (2022). Coir Fiber and its Composites: Processing, Properties and Applications. Elsevier.

Jesus, F., Pereira, J. L., Campos, I., Santos, M., et al. (2022). A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Science of The Total Environment, 820, 153282. https://doi.org/10.1016/ j.scitotenv.2022.153282. DOI: https://doi.org/10.1016/j.scitotenv.2022.153282

Jin, J. N., Yao, J., Zhang, Q. Y., Yu, C., et al. (2015). An integrated approach of bioassay and molecular docking to study the dihydroxylation mechanism of pyrene by naphthalene dioxygenase in Rhodococcus sp. ustb-1. Chemosphere, 128, 307-313. DOI: https://doi.org/10.1016/j.chemosphere.2015.02.012

Jun, L. C., Walker, J. D., & Cooney, J. J. (1973). Utilization of hydrocarbons by Cladosporium resinae. Microbiology, 76(1), 243-246. DOI: https://doi.org/10.1099/00221287-76-1-243

Kanchiswamy, C. N., Maffei, M., Malnoy, M., Velasco, R., & Kim, J. S. (2016). Fine-tuning next-generation genome editing tools. Trends in biotechnology, 34(7), 562-574. DOI: https://doi.org/10.1016/j.tibtech.2016.03.007

Kobetičová, K., Šimek, Z., Brezovský, J., & Hofman, J. (2011). Toxic effects of nine polycyclic aromatic compounds on Enchytraeus crypticus in artificial soil in relation to their properties. Ecotoxicology and environmental safety, 74(6), 1727-1733. DOI: https://doi.org/10.1016/j.ecoenv.2011.04.013

Kumar, S. S., Shantkriti, S., Muruganandham, T., Murugesh, E., Rane, N., & Govindwar, S. P. (2016). Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Ecological Informatics, 31, 112-121. DOI: https://doi.org/10.1016/j.ecoinf.2015.12.001

Kumar, V., Dangi, A. K., & Shukla, P. (2018). Engineering thermostable microbial xylanases toward its industrial applications. Molecular biotechnology, 60(3), 226-235. DOI: https://doi.org/10.1007/s12033-018-0059-6

Lea-Smith, D. J., Biller, S. J., Davey, M. P., Cotton, C. A., et al. (2015). Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the National Academy of Sciences, 112(44), 13591-13596. DOI: https://doi.org/10.1073/pnas.1507274112

Li, F., Wu, H., Li, L., Li, X., Zhao, J., & Peijnenburg, W. J. (2012). Docking and QSAR study on the binding interactions between polycyclic aromatic hydrocarbons and estrogen receptor. Ecotoxicology and environmental safety, 80, 273-279. DOI: https://doi.org/10.1016/j.ecoenv.2012.03.009

Li, Q., Li, J., Jiang, L., Sun, Y., Luo, C., & Zhang, G. (2021). Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. Journal of Hazardous Materials, 403, 123895. DOI: https://doi.org/10.1016/j.jhazmat.2020.123895

Liang, Y., Jiao, S., Wang, M., Yu, H., & Shen, Z. (2020). A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metabolic engineering, 57, 13-22. DOI: https://doi.org/10.1016/j.ymben.2019.10.003

Librando, V., & Alparone, A. (2007). Electronic polarizability as a predictor of biodegradation rates of dimethylnaphthalenes. An ab initio and density functional theory study. Environmental science & technology, 41(5), 1646-1652. DOI: https://doi.org/10.1021/es061632+

Librando, V., & Pappalardo, M. (2014). Theoretical approach to the innovative mutation of naphthalene 1, 2-dioxygenase: a molecular dynamic and docking study. Journal of Molecular Modeling, 20(8), 1-9. DOI: https://doi.org/10.1007/s00894-014-2354-x

Mallick, S., Chakraborty, J., & Dutta, T. K. (2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Critical reviews in microbiology, 37(1), 64-90. DOI: https://doi.org/10.3109/1040841X.2010.512268

Mangwani, N., Kumari, S., & Das, S. (2021). Taxonomy and characterization of biofilm forming polycyclic aromatic hydrocarbon degrading bacteria from marine environments. Polycyclic Aromatic Compounds, 41(6), 1249-1262. DOI: https://doi.org/10.1080/10406638.2019.1666890

Mardani, G., Mahvi, A. H., Hashemzadeh-Chaleshtori, M., Naseri, S., Dehghani, M. H., & Ghasemi-Dehkordi, P. (2017). Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil. Jundishapur Journal of Natural Pharmaceutical Products, 12(3Supp), e64313. DOI: 10.5812/jjnpp.64313. DOI: https://doi.org/10.5812/jjnpp.64313

Michel, C., Jean, M., Coulon, S., Dictor, M. C., Delorme, F., Morin, D., & Garrido, F. (2007). Biofilms of As (III)-oxidising bacteria: formation and activity studies for bioremediation process development. Applied microbiology and biotechnology, 77(2), 457-467. DOI: https://doi.org/10.1007/s00253-007-1169-4

Mishra A., (2020) Bacterial Degradation of Polycyclic Aromatic Hydrocarbons for sustainable environment: An overview. Advances in Bioresearch, 11 (5), 166-172

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., et al. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), 2785-2791. DOI: https://doi.org/10.1002/jcc.21256

Nogales, J., Mueller, J., Gudmundsson, S., Canalejo, F. J., et al. (2020). High‐quality genome‐scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environmental microbiology, 22(1), 255-269. DOI: https://doi.org/10.1111/1462-2920.14843

Okoro, H. K., Asaju, R. O., Ogunkunle, C. O., & Basheeru, K. A. (2020). Sources, fate and degradation of polycyclic aromatic hydrocarbons in the environment. Nigerian Journal of Pharmaceutical and Applied Science Research, 9(2), 67-75.

Pabo, C. O., & Nekludova, L. (2000). Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition?. Journal of molecular biology, 301(3), 597-624. DOI: https://doi.org/10.1006/jmbi.2000.3918

Panelli, S., Capelli, E., Comandatore, F., Landinez-Torres, A., Granata, M. U., Tosi, S., & Picco, A. M. (2017). A metagenomic-based, cross-seasonal picture of fungal consortia associated with Italian soils subjected to different agricultural managements. Fungal Ecology, 30, 1-9. DOI: https://doi.org/10.1016/j.funeco.2017.07.005

Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813. DOI: https://doi.org/10.3389/fmicb.2020.562813

Patel, R., Zaveri, P., Mukherjee, A., Agarwal, P. K., More, P., & Munshi, N. S. (2019). Development of fluorescent protein-based biosensing strains: a new tool for the detection of aromatic hydrocarbon pollutants in the environment. Ecotoxicology and environmental safety, 182, 109450. DOI: https://doi.org/10.1016/j.ecoenv.2019.109450

Pazos, F., Guijas, D., Valencia, A., & De Lorenzo, V. (2005). MetaRouter: bioinformatics for bioremediation. Nucleic acids research, 33(suppl_1), D588-D592. DOI: https://doi.org/10.1093/nar/gki068

Petrov, A. A. (2012). Petroleum hydrocarbons. Springer Science & Business Media.

Plewniak, F., Crognale, S., Rossetti, S., & Bertin, P. N. (2018). A genomic outlook on bioremediation: the case of arsenic removal. Frontiers in microbiology, 9, 820. DOI: https://doi.org/10.3389/fmicb.2018.00820

Rabani, M. S., Sharma, R., Singh, R., & Gupta, M. K. (2022). Characterization and Identification of naphthalene degrading bacteria isolated from petroleum contaminated Sites and their possible use in bioremediation. Polycyclic Aromatic Compounds, 42(3), 978-989. DOI: https://doi.org/10.1080/10406638.2020.1759663

Sakshi, Singh, S. K., & Haritash, A. K. (2020). Evolutionary relationship of polycyclic aromatic hydrocarbons degrading bacteria with strains isolated from petroleum contaminated soil based on 16S rRNA diversity. Polycyclic Aromatic Compounds, 42 (5), 2045-2058. https://doi.org/10.1080/10406638.2020.1825003. DOI: https://doi.org/10.1080/10406638.2020.1825003

Sayler, G. S., & Ripp, S. (2000). Field applications of genetically engineered microorganisms for bioremediation processes. Current opinion in biotechnology, 11(3), 286-289. DOI: https://doi.org/10.1016/S0958-1669(00)00097-5

Schellhammer, I., & Rarey, M. (2004). FlexX‐Scan: Fast, structure‐based virtual screening. PROTEINS: Structure, Function, and Bioinformatics, 57(3), 504-517. DOI: https://doi.org/10.1002/prot.20217

Shahsavari, E., Schwarz, A., Aburto-Medina, A., & Ball, A. S. (2019). Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Current Pollution Reports, 5(3), 84-92. DOI: https://doi.org/10.1007/s40726-019-00113-8

Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: a review. Journal of environmental management, 210, 10-22. DOI: https://doi.org/10.1016/j.jenvman.2017.12.075

Shekhar, S. K., Godheja, J., & Modi, D. R. (2020). Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In R. Bharagava, G. Saxena, (eds) Bioremediation of industrial waste for environmental safety (pp. 437-474). Singapore, Springer. DOI: https://doi.org/10.1007/978-981-13-3426-9_18

Shukla, S., Khan, R., Bhattacharya, P., Devanesan, S., & AlSalhi, M. S. (2022). Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils. Chemosphere, 292, 133413. DOI: https://doi.org/10.1016/j.chemosphere.2021.133413

Sime-Ngando, T., Bertrand, J. C., Bogusz, D., Brugère, J. F., et al. (2018). The evolution of living beings started with prokaryotes and in interaction with prokaryotes. In J.C. Bertrand, P., Normand, B. Ollivier, T. Sime-Ngando (eds.) Prokaryotes and evolution (pp. 241-338). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-99784-1_5

Skinder, B. M., Uqab, B., & Ganai, B. A. (2020). Bioremediation: a sustainable and emerging tool for restoration of polluted aquatic ecosystem. In H. Qadri, R. Bhat, M. Mehmood, G. Dar (eds.), Fresh Water Pollution Dynamics and Remediation (pp. 143-165). Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_9. DOI: https://doi.org/10.1007/978-981-13-8277-2_9

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359. DOI: https://doi.org/10.1023/A:1008202821328

Tang, J., Lu, X., Sun, Q., & Zhu, W. (2012). Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems & Environment, 149, 109-117. DOI: https://doi.org/10.1016/j.agee.2011.12.020

Tanveer, T., Shaheen, K., Parveen, S., Misbah, Z. T., Babar, M. M., & Gul, A. (2018). Omics-based bioengineering in environmental biotechnology. In Omics Technologies and Bio-Engineering (pp. 353-364). Academic Press. DOI: 10.1016/B978-0-12-815870-8.00019-X. DOI: https://doi.org/10.1016/B978-0-12-815870-8.00019-X

Thomsen, R., & Christensen, M. H. (2006). MolDock: a new technique for high-accuracy molecular docking. Journal of medicinal chemistry, 49(11), 3315-3321. DOI: https://doi.org/10.1021/jm051197e

Tropel, D., & Van Der Meer, J. R. (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiology and molecular biology reviews, 68(3), 474-500. DOI: https://doi.org/10.1128/MMBR.68.3.474-500.2004

Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461. DOI: https://doi.org/10.1002/jcc.21334

Ukiwe, L. N., Egereonu, U. U., Njoku, P. C., Nwoko, C. I., & Allinor, J. I. (2013). Polycyclic aromatic hydrocarbons degradation techniques. International Journal of Chemistry, 5(4), 43-55. DOI: https://doi.org/10.5539/ijc.v5n4p43

Ulu¸seker, C., Torres, J., García, J. L., Hanczyc, M. M., Nogales, J., & Kahramanogullarý, O. (2017). “September. a dynamic model of the phosphate ˘ response system with synthetic promoters in Escherichia coli,” in Proceedings of the Artificial Life Conference, 14, 412–419. DOI: https://doi.org/10.7551/ecal_a_069

Utturkar, S. M., Bollmann, A., Brzoska, R. M., Klingeman, D. M., Epstein, S. E., Palumbo, A. V., & Brown, S. D. (2013). Draft genome sequence for Ralstonia sp. strain OR214, a bacterium with potential for bioremediation. Genome announcements, 1(3), e00321-13. DOI: https://doi.org/10.1128/genomeA.00321-13

Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52(4), 609-623. DOI: https://doi.org/10.1002/prot.10465

Wei, Z., Donglan, H., Xiaohua, L., Huanhuan, Z., Xiaobo, Z., & Guojun, C. (2013). Isolation and characterization of naphthalene-degrading strains, Pseudomonas sp. CZ2 and CZ5. African Journal of Microbiology Research, 7(1), 13-19. DOI: https://doi.org/10.5897/AJMR12.494

Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., et al. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, 1-10. DOI: https://doi.org/10.1016/j.scitotenv.2012.02.023

Zafra, G., Absalón, Á. E., Anducho-Reyes, M. Á., Fernandez, F. J., & Cortés-Espinosa, D. V. (2017). Construction of PAH-degrading

mixed microbial consortia by induced selection in soil. Chemosphere, 172, 120-126. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.038

Zhang, D., & Liu, Q. (2016). Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosensors and Bioelectronics, 75, 273-284. DOI: https://doi.org/10.1016/j.bios.2015.08.037

Zhao, H. P., Liang, S. H., & Yang, X. (2011). Isolation and characterization of catechol 2, 3-dioxygenase genes from phenanthrene degraders Sphingomonas, sp. ZP1 and Pseudomonas sp. ZP2. Environmental technology, 32(16), 1895-1901. DOI: https://doi.org/10.1080/09593330.2011.568007

Zuo, Z., Gong, T., Che, Y., Liu, R., et al. (2015). Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation, 26(3), 223-233. DOI: https://doi.org/10.1007/s10532-015-9729-2

Downloads

Published

2022-12-31

How to Cite

Mishra, A., & Kaur, R. (2022). Techniques of Bioremediation using bacteria for the treatment of polycyclic aromatic hydrocarbons: A Review. Journal of Experimental Biology and Agricultural Sciences, 10(6), 1318–1330. https://doi.org/10.18006/2022.10(6).1318.1330

Issue

Section

REVIEW ARTICLES