Screening, identification, and antibiotic activity of secondary metabolites of Penicillium sp. LPB2019K3-2 isolated from endemic amphipods of Lake Baikal
DOI:
https://doi.org/10.18006/2022.10(6).1422.1431Keywords:
Lake Baikal, HPLC-MS, Natural products, Penicillium sp.Abstract
This study aimed to assess the influence of nutrient media content on the production of antibiotics and the ability of water fungi isolated from lake Baikal to synthesize novel natural products. Interest in this topic stems from the high demand for new drugs, and studies are carried out via the screening of new natural products with biological activity produced by unstudied or extremophilic microorganisms. For this study, a strain of Penicillium sp. was isolated from endemic Baikal phytophagous amphipod species. Here, we identified natural products using the following classical assays: biotechnological cultivation, MALDI identification of the strain, natural product extraction, antimicrobial activity determination, and modern methods such as HPLC-MS for the dereplication and description of natural products. It was found that many detected metabolites were not included in the most extensive database. Most of the identified metabolites were characterized by their biological activity and demonstrated antibiotic activity against model Gram-positive and Gram-negative bacteria. The isolated strain of water fungus produced penicolinate B, meleagrin A, austinoneol A, andrastin A, and other natural products. Additionally, we show that the synthesis of low-molecular-weight natural products depends on the composition of the microbiological nutrient media used for cultivation. Thus, although the golden age of antibiotics ended many years ago and microscopic fungi are well studied producers of known antibiotics, the water fungi of the Lake Baikal ecosystem possess great potential in the search for new natural products for the development of new drugs. These natural products can become new pharmaceuticals and can be used in therapy to treat new diseases such as SARS, MERS, H5N1, etc.
References
Agrawal, S., Samanta, S., & Deshmukh, S. K. (2022). The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnology and Applied Biochemistry, 69(3), 1159-1165. DOI: https://doi.org/10.1002/bab.2192
Aleruchi, C., Salma, M. M., & Godwin, O. A. (2018). Antimicrobial activity of ethanolic and methanolic extracts of Borassus aethiopium initial shoot on multi-drug resistant bacteria and dermatophytes, Journal of Advances in Microbiology, 12(1), 1-7. https://doi.org/10.9734/JAMB/2018/43199. DOI: https://doi.org/10.9734/JAMB/2018/43199
Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., et al. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645. https://doi.org/10.2147/IDR.S173867. DOI: https://doi.org/10.2147/IDR.S173867
Axenov-Gribanov, D. V., Kostka, D. V., Vasilieva, U. А., Shatilina, Z. M., et al. (2020). Cultivable actinobacteria first found in baikal endemic algae is a new source of natural products with antibiotic activity. International Journal of microbiology, 2020(4), 1-13.https://doi.org/10.1155/2020/5359816. DOI: https://doi.org/10.1155/2020/5359816
Axenov-Gribanov, D. V., Voytsekhovskaya, I. V., Rebets, Y. V., Tokovenko, B. T., et al. (2016). Actinobacteria possessing antimicrobial and antioxidant activities isolated from the pollen of scots pine (Pinus sylvestris) grown on the Baikal shore. Antonie van Leeuwenhoek, 109(10), 1307–1322. https://doi.org/10.1007/ s10482-016-0730-5. DOI: https://doi.org/10.1007/s10482-016-0730-5
Axenov-Gribanov, D., Rebets, Y., Tokovenko, B., Voytsekhovskaya, I., Timofeyev, M., & Luzhetskyy, A. (2016). The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal. Folia Microbiologica, 61(2), 159–168. https://doi.org/10.1007/s12223-015-0421-z. DOI: https://doi.org/10.1007/s12223-015-0421-z
Berkin, N. S., Makarov, A. A., & Rusinek, O. T. (2009). Bajkalovedenie[Baikology]: Učebnoe posobie. Izd. Irkutskogo Gosudarstv, University, pp. 1-291 (in Russ.).
Bertinetti, B. V., Peña, N. I., & Cabrera, G. M. (2009). An antifungal tetrapeptide from the culture of Penicillium canescens. Chemistry & Biodiversity, 6(8), 1178-1184. https://doi.org/10.1002/cbdv.200800336. DOI: https://doi.org/10.1002/cbdv.200800336
Bhowmick, A., Oishi, T. S., & Aishy, R. I. (2022). Current Antibiotic-resistant crisis and initiatives to combat antimicrobial resistance: A review from global perspective. Doctoral dissertation, Brac University, Dhaka, Bangladesh.
Chen, Y., Xu, L., Liu, S., Zhang, Z., & Cao, G. (2022). Halometabolites isolated from the marine-derived fungi with potent pharmacological activities. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1038487. DOI: https://doi.org/10.3389/fmicb.2022.1038487
Das, R., Rauf, A., Mitra, S., Emran, T. B., et al. (2022). Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chemico-Biological Interactions, 110072. https://doi.org/10.1016/j.cbi.2022.110072. DOI: https://doi.org/10.1016/j.cbi.2022.110072
Dat, T. T. H., Steinert, G., Cuc, N. T. K., Smidt, H., & Sipkema, D. (2021). Bacteria cultivated from sponges and bacteria not yet cultivated from sponges—a review. Frontiers in Microbiology, 3427. https://doi.org/10.3389/fmicb.2021.737925. DOI: https://doi.org/10.3389/fmicb.2021.737925
Demain, A. L. (2014). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology, 41(2), 185–201. https://doi.org/ 10.1007/s10295-013-1325-z. DOI: https://doi.org/10.1007/s10295-013-1325-z
Dembitsky, V. M. (2014). Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine, 21(12), 1559-1581. https://doi.org/10.1016/j.phymed.2014.07.005. DOI: https://doi.org/10.1016/j.phymed.2014.07.005
Devi, N. (2014). Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Current Research in Environmental & Applied Mycology, 4(1), 34–43. https://doi.org/10.5943/cream/4/1/3. DOI: https://doi.org/10.5943/cream/4/1/3
Durand, G. A., Raoult, D., & Dubourg, G. (2019). Antibiotic discovery: History, methods and perspectives. International Journal of Antimicrobial Agents, 53(4), 371–382. https://doi.org/10.1016/j.ijantimicag.2018.11.010. DOI: https://doi.org/10.1016/j.ijantimicag.2018.11.010
Durvasula, R.V., & Rao, D.S. (2018). Extremophiles: From biology to biotechnology. CRC Press: pp.1-389. DOI: https://doi.org/10.1201/9781315154695-1
Fernandes, A. S., Oliveira, C., Reis, R. L., Martins, A., & Silva, T. H. (2022). Marine-inspired drugs and biomaterials in the perspective of pancreatic cancer therapies. Marine Drugs, 20(11), 689. https://doi.org/10.3390/md20110689. DOI: https://doi.org/10.3390/md20110689
Ferreira, L., Vega Castaño, S., Sánchez-Juanes, F., González-Cabrero, S., et al. (2010). Identification of Brucella by MALDI-TOF mass spectrometry. Fast and reliable identification from agar plates and blood cultures. PLoS One, 5(12), e14235. DOI: https://doi.org/10.1371/journal.pone.0014235
Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in Microbiology, 5. https://doi.org/10.3389/ fmicb.2014.00773. DOI: https://doi.org/10.3389/fmicb.2014.00773
Gonçalves, S., & Romano, A. (2018). Production of Plant Secondary Metabolites by Using Biotechnological Tools. In R. Vijayakumar, & S. S. Raja (Eds.), Secondary Metabolites - Sources and Applications. IntechOpen. https://doi.org/10.5772/ intechopen.76414 DOI: https://doi.org/10.5772/intechopen.76414
Gonçalves, V. N., Campos, L. S., Melo, I. S., Pellizari, V. H., Rosa, C. A., & Rosa, L. H. (2013). Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biology, 36(12), 1823–1831. https://doi.org/10.1007/s00300-013-1403-8. DOI: https://doi.org/10.1007/s00300-013-1403-8
Grossart, H.P., & Rojas-Jimenez, K. (2016). Aquatic fungi: Targeting the forgotten in microbial ecology. Current Opinion in Microbiology, 31, 140–145. https://doi.org/10.1016/ j.mib.2016.03.016. DOI: https://doi.org/10.1016/j.mib.2016.03.016
Guo, Z., Abulaizi, A., Huang, L., Xiong, Z., Zhang, S., Liu, T., & Wang, R. (2022). Discovery of p-terphenyl metabolites as potential phosphodiesterase PDE4D inhibitors from the coral-associated fungus Aspergillus sp. ITBBc1. Marine Drugs, 20(11), 679. https://doi.org/10.3390/md20110679. DOI: https://doi.org/10.3390/md20110679
Gupta, S., Chaturvedi, P., Kulkarni, M. G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology advances, 39, 107462. DOI: https://doi.org/10.1016/j.biotechadv.2019.107462
Hamed, A., Abdel-Razek, A. S., Araby, M., Abu-Elghait, M., et al. (2020). Meleagrin from marine fungus Emericella dentata Nq45: Crystal structure and diverse biological activity studies. Natural Product Research, 35(21), 3830–3838. https://doi.org/10.1080/ 14786419.2020.1741583. DOI: https://doi.org/10.1080/14786419.2020.1741583
Hamza, L. F., Kamal, S. A., & Hameed, I. H. (2015). Determination of metabolites products by Penicillium expansum and evaluating antimicobial activity. Journal of Pharmacognosy and Phytotherapy, 7, 194-220. https://doi.org/10.5897/ JPP2015.0360 DOI: https://doi.org/10.5897/JPP2015.0360
Hasan, S., Ansari, M. I., Ahmad, A., & Mishra, M. (2015). Major bioactive metabolites from marine fungi: a review. Bioinformation, 11(4), 176–181. https://doi.org/10.6026/97320630011176. DOI: https://doi.org/10.6026/97320630011176
Hitora, Y., Sejiyama, A., Honda, K., Ise, Y., et al. (2021). Fluorescent image-based high-content screening of extracts of natural resources for cell cycle inhibitors and identification of a new sesquiterpene quinone from the sponge, Dactylospongia metachromia. Bioorganic & Medicinal Chemistry, 31, 115968. https://doi.org/10.1016/j.bmc.2020.115968. DOI: https://doi.org/10.1016/j.bmc.2020.115968
Hu, Y., & Zhu, B. (2016). Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synthetic and Systems Biotechnology, 1(3), 143-149. https://doi.org/10.1016/j.synbio.2016.09.002. DOI: https://doi.org/10.1016/j.synbio.2016.09.002
Ibrar, M., Ullah, M. W., Manan, S., Farooq, U., Rafiq, M., & Hasan, F. (2020). Fungi from the extremes of life: An untapped treasure for bioactive compounds. Applied Microbiology and Biotechnology, 104(7), 2777–2801. https://doi.org/10.1007/ s00253-020-10399-0. DOI: https://doi.org/10.1007/s00253-020-10399-0
Imhoff, J. F. (2016). Natural products from marine fungi—still an underrepresented Resource. Marine Drugs, 14, 1-19. https://doi.org/10.3390/md14010019. DOI: https://doi.org/10.3390/md14010019
Jakob, L., Bedulina, D. S., Axenov-Gribanov, D. V., Ginzburg, M., et al. (2017). Uptake kinetics and subcellular compartmentalization explain lethal but not sublethal effects of cadmium in two closely related amphipod species. Environmental science & technology, 51(12), 7208-7218.https://doi.org/10.1021/acs.est.6b06613 DOI: https://doi.org/10.1021/acs.est.6b06613
Jamal, M. T., & Sathianeson, S. (2022). Antibiofilm activity of secondary metabolites of sponge-associated bacterium Alcanivorax sp. from the Red Sea. Frontiers in Marine Science, 2062. https://doi.org/10.3389/fmars.2022.980418. DOI: https://doi.org/10.3389/fmars.2022.980418
Jørgensen, P. S., Ortega, D. I. A., Blasiak, R., Cornell, S., et al. (2022). The lure of novel biological and chemical entities in food-system transformations. One Earth, 5(10), 1085-1088. DOI: https://doi.org/10.1016/j.oneear.2022.09.011
Kavanagh, K., & Sheehan, G. (2018). The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. Journal of Fungi, 4(3), 113. DOI: https://doi.org/10.3390/jof4030113
Keller, N. P. (2019). Fungal secondary metabolism: Regulation, function and drug discovery. Nature Reviews Microbiology, 17, 167-180. https://doi.org/10.1038/s41579-018-0121-1. DOI: https://doi.org/10.1038/s41579-018-0121-1
Kumaravel, K., Limbadri, S., & Liu, Y. (2018). Isolation and characterization of bioactive secondary metabolites from the deep sea derived fungi Penicillium sp. SCSIO. XWFO1254. In Magnetic Resonance and its Applications. RAS: St. Peterburg, Russia, 86-87.
Lipko, I. A., & Belykh, O. I. (2021). Environmental features of freshwater planktonic actinobacteria. Contemporary Problems of Ecology, 14(2), 158–170. https://doi.org/10.1134/ S1995425521020074. DOI: https://doi.org/10.1134/S1995425521020074
Miri, M. R., Zare, A., Saberzadeh, J., Baghban, N., Nabipour, I., & Tamadon, A. (2022). Anti-lung cancer marine compounds: a review. Therapeutic Innovation & Regulatory Science, 56, 191-205. https://doi.org/10.1007/s43441-022-00375-3. DOI: https://doi.org/10.1007/s43441-022-00375-3
Nahar, L., & Sarker, S. D. (2012). Supercritical fluid extraction in natural products analyses. In В S. Sarker,S. D.,& Nahar L. (Ed.), (2012). Natural Products Isolation (V. 864, pp. 43–74). Humana Press. https://doi.org/10.1007/978-1-61779-624-1_3. DOI: https://doi.org/10.1007/978-1-61779-624-1_3
Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of natural products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285. DOI: https://doi.org/10.1021/acs.jnatprod.9b01285
Nielsen, K. F., Gravesen, S., Nielsen, P. A., Andersen, B., Thrane, U., & Frisvad, J. C. (1999). Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia, 145(1), 43-56. https://doi.org/10.1023/a:1007038211176. DOI: https://doi.org/10.1023/A:1007038211176
Protasov, E. S. (2017). The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal. Antonie van Leeuwenhoek, 110, 1593-1611.https://doi.org/10.1007/s10482-017-0910-y. DOI: https://doi.org/10.1007/s10482-017-0910-y
Rabosky, D. L. (2022). Evolutionary time and species diversity in aquatic ecosystems worldwide. Biological Reviews, 97(6), 2090-2105. DOI: https://doi.org/10.1111/brv.12884
Rad, A. K., Astaikina, A., Streletskii, R., Zarei, M., & Etesami, H. (2022). Fungicide and pesticide fallout on aquatic fungi. In Freshwater Mycology: Perspectives of Fungal Dynamics in Freshwater Ecosystems (pp. 171-191). Elsevier. https://doi.org/ 10.1016/B978-0-323-91232-7.00001-5. DOI: https://doi.org/10.1016/B978-0-323-91232-7.00001-5
Rebets, Y., Nadmid, S., Paulus, C., Dahlem, C., et al. (2019). Perquinolines A–C: unprecedented bacterial tetrahydroisoquinolines involving an intriguing biosynthesis. Angewandte Chemie International Edition, 58(37), 12930-12934. https://doi.org/10.1002/anie.201905538. DOI: https://doi.org/10.1002/anie.201905538
Richter, L., Wanka, F., Boecker, S., Storm, D., et al. (2014). Engineering of Aspergillus niger for the production of secondary metabolites. Fungal biology and biotechnology, 1(1), 1-13. https://doi.org/10.1186/s40694-014-0004-9. DOI: https://doi.org/10.1186/s40694-014-0004-9
Santos, J. D., Vitorino, I., De la Cruz, M., Díaz, C., et al. (2019). Bioactivities and extract dereplication of Actinomycetales isolated from marine sponges. Frontiers in Microbiology, 10, 727. DOI: https://doi.org/10.3389/fmicb.2019.00727
Scopel, M. (2013). Dipeptide cis-cyclo (Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorganic & Medicinal Chemistry Letters, 23(3), 624-626. https://doi.org/10.1016/j.bmcl.2012.12.020. DOI: https://doi.org/10.1016/j.bmcl.2012.12.020
Shishlyannikova, T. A., Kuzmin, A. V., Fedorova, G. A., Shishlyannikov, S. M., et al. (2017). Ionofore antibiotic polynactin produced by Streptomyces sp. 156A isolated from Lake Baikal. Natural Product Research, 31(6), 639–644. https://doi.org/ 10.1080/14786419.2016.1217203. DOI: https://doi.org/10.1080/14786419.2016.1217203
Shukla, P. J., Bhatt, V. D., Suriya, J., & Mootapally, C. (2020). Marine extremophiles: Adaptations and biotechnological applications. В S. Kim (Eds.), Encyclopedia of Marine Biotechnology (1st ed., pp. 1753–1771). Wiley. https://doi.org/ 10.1002/9781119143802.ch74. DOI: https://doi.org/10.1002/9781119143802.ch74
Smith, H., Doyle, S., & Murphy, R. (2023). Target directed identification of natural bioactive compounds from filamentous fungi. Food Chemistry, 405, 134743. https://doi.org/10.1016/ j.foodchem.2022.134743. DOI: https://doi.org/10.1016/j.foodchem.2022.134743
Sogawa, K., Watanabe, M., Sato, K., Segawa, S., et al. (2011). Use of the MALDI BioTyper system with MALDI–TOF mass spectrometry for rapid identification of microorganisms. Analytical and Bioanalytical Chemistry, 400(7), 1905–1911. https://doi.org/10.1007/s00216-011-4877-7. DOI: https://doi.org/10.1007/s00216-011-4877-7
Suhaib, A. B., Azra, N. K., & Bashir, A. G. (2011). Identification of some Penicillium species by traditional approach of morphological observation and culture. African Journal of Microbiology Research, 5(21), 3493-3496. DOI: https://doi.org/10.5897/AJMR11.677
Sukhanova, E. V., Zimens, E. A., Parfenova, V. V., & Belykh, O. I. (2017). Diversity of polyketide synthase genes in the genomes of heterotrophic microorganisms isolated from epilithic biofilms of lake Baikal. Moscow University Biological Sciences Bulletin, 72(4), 211–217. https://doi.org/10.3103/S0096392517040113. DOI: https://doi.org/10.3103/S0096392517040113
Surabhi, K., Rangeshwaran, R., Frenita, M.L., Shylesha, A.N.,& Jagadeesh, P. (2018). Isolation and characterization of the culturable microbes associated with gut of adult dung beetle Onitis philemon (Fabricius). Journal of Pharmacognosy and Phytochemistry,7, 1609-1614.
Takhteev, V. V. (2019). On the current state of taxonomy of the Baikal Lake amphipods (Crustacea, Amphipoda) and the typological ways of constructing their system. Arthropoda Selecta, 28(1), 374–402. https://doi.org/10.15298/arthsel.28.3.03. DOI: https://doi.org/10.15298/arthsel.28.3.03
Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., & Blatt, N. L. (2019). World Health Organization report: current crisis of antibiotic resistance. BioNanoScience, 9(4), 778-788. DOI: https://doi.org/10.1007/s12668-019-00658-4
Timoshkin, O.A. (2009). Annotirovannyj spisok fauny ozera Bajkal i ego vodosbornogo bassejna [Annotated list of the faunas of Lake Baikal and its drainage basin]. Novosibirsk: Nauka (in Russ.).
Ul Hassan, Z., Al Thani, R., Alnaimi, H., Migheli, Q., & Jaoua, S. (2019). Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp. ACS omega, 4(17), 17186-17193. DOI: https://doi.org/10.1021/acsomega.9b01638
Varga, J., Baranyi, N., Chandrasekaran, M., Vágvölgyi, C., & Kocsubé, S. (2015). Mycotoxin producers in the Aspergillus genus: An update. Acta Biologica Szegediensis, 59(2), 151-167.
Voitsekhovskaia, I., Paulus, C., Dahlem, C., Rebets, Y., et al. (2020). Baikalomycins AC, New Aquayamycin-type angucyclines isolated from Lake Baikal derived Streptomyces sp. IB201691-2A. Microorganisms, 8(5), 680. https://doi.org/10.3390/ microorganisms8050680. DOI: https://doi.org/10.3390/microorganisms8050680
Whittle, M., Willett, P., Klaffke, W., & Van Noort, P. (2003). Evaluation of similarity measures for searching the dictionary of natural products database. Journal of Chemical Information and Computer Sciences, 43(2), 449–457. https://doi.org/10.1021/ ci025591m. DOI: https://doi.org/10.1021/ci025591m
Yadav, A. N., Singh, S., Mishra, S., & Gupta, A. (Eds.) (2019). Recent advancement in white biotechnology through fungi: Volume 2: Perspective for Value-Added Products and Environments (p. 528). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-14846-1
Zemskaya, T. I. (2020). Microorganisms of Lake Baikal—The deepest and most ancient lake on Earth. Applied Microbiology and Biotechnology, 104, 6079-6090. https://doi.org/10.1007/s00253-020-10660-6. DOI: https://doi.org/10.1007/s00253-020-10660-6
Zhang, X., Li, S.J., Li, J.J., Liang, Z.Z., & Zhao, C.-Q. (2018). Novel natural products from extremophilic fungi. Marine Drugs, 16(6), 194. https://doi.org/10.3390/md16060194 DOI: https://doi.org/10.3390/md16060194
Zhao, Y., Song, Z., Ma, Z., Bechthold, A., & Yu, X. (2019). Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations. Journal of Industrial Microbiology and Biotechnology, 46(5), 697-708. DOI: https://doi.org/10.1007/s10295-019-02146-w
Zhu, H., Swierstra, J., Wu, C., Girard, G., et al. P. (2014). Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology, 160(8), 1714-1725. https://doi.org/10.1099/mic.0.078295-0. DOI: https://doi.org/10.1099/mic.0.078295-0
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.