Biogenic Synthesis and Characterization of Silver Nanoparticles (AgNPs) Produced by Indigenous Microorganisms Isolated from Banana (Musa spp) Soils
DOI:
https://doi.org/10.18006/2023.11(1).105.118Keywords:
Aspergillus , Bacillus , Microorganism, Nanotechnology, PenicilliumAbstract
This research focused on the screening of indigenous microorganisms isolated from banana soils for their capability to synthesize silver nanoparticles (AgNPs) extracellularly. Ninety-five isolates were screened for AgNP production. The cell-free extracts of these isolates were added to silver nitrate (AgNO3) aqueous solution and were observed for color changes from original pale yellow to dark brown. Ten isolates (3 bacteria and 7 fungi) were found capable of producing AgNPs. Bacterial isolates B2, B3, and B5 were molecularly identified as Bacillus aryabhattai, Priestia megaterium, and B. megaterium, respectively. The AgNPs produced by these bacterial isolates were circular and showed an absorbance peak at approximately 420 nm. On the other hand, the fungal isolates F2, F3, and F43 were molecularly identified as Penicilliumcitrinum, P. glaucoroseum, and P. oxalicum. The AgNPs produced by the Penicillium spp were aggregated, circular and showed absorbance peaks at 420 nm. The other four fungal isolates, F7, F24, F29, and F40, were identified as Aspergillus flavus, A. terreus, and A. japonicum (F29 and F40), respectively. The AgNPs produced by the Aspergillus spp. were circular and showed absorbance peaks between 420 nm and 450 nm. The continuous search for novel isolates that can carry out the biogenic synthesis of AgNPs remains the focus of nanotechnological research. This study confirms microorganisms of Bacillus, Penicillium, and Aspergillus genera can effectively biosynthesize AgNPs.
References
Adan, M.F., Baybay, Z., Lantican, N., et al. (2018). Silver nanoparticles extracellularly produced by Serratia sp. NBL1001 have antibacterial properties. Philippine Science Letters, 11, 75–83.
Ahmed, T., Shahid, M., Noman, M., et al. (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens, 9, 160. DOI: https://doi.org/10.3390/pathogens9030160
Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109-124. DOI: https://doi.org/10.1016/j.jrras.2022.06.012
Anjum, N. A., Gill, S. S., Duarte, A. C., Pereira, E., & Ahmad, I. (2013). Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research, 15(9), 1-26. DOI: https://doi.org/10.1007/s11051-013-1896-7
Barabadi, H., Tajani, B., Moradi, M., Damavandi Kamali, K., Meena, R., Honary, S., & Saravanan, M. (2019). Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a journey into the world of microorganisms. Journal of Cluster Science, 30(4), 843-856. DOI: https://doi.org/10.1007/s10876-019-01554-3
Bhattacharjee, S., Debnath, G., Das, A. R., Saha, A. K., & Das, P. (2017). Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(4), 045008. DOI: https://doi.org/10.1088/2043-6254/aa84ec
Danagoudar, A., Pratap, G. K., Shantaram, M., Ghosh, K., Kanade, S. R., & Joshi, C. G. (2020). Characterization, cytotoxic and antioxidant potential of silver nanoparticles biosynthesised using endophytic fungus (Penicillium citrinum CGJ-C1). Materials Today Communications, 25, 101385. DOI: https://doi.org/10.1016/j.mtcomm.2020.101385
Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4(2), 121-126. DOI: https://doi.org/10.1007/s13205-013-0130-8
Deljou, A., & Goudarzi, S. (2016). Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian Journal of Biotechnology, 14(2), 25. DOI: https://doi.org/10.15171/ijb.1259
Elamawi, R. M., & Al-Harbi, R. E. (2014). Effect of biosynthesized silver nanoparticles on Fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. Journal of Plant Protection and Pathology, 5(2), 225-237. DOI: https://doi.org/10.21608/jppp.2014.87901
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103-109. DOI: https://doi.org/10.1016/j.nano.2009.04.006
Gade, A. K., Bonde, P. P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2(3), 243-247. DOI: https://doi.org/10.1166/jbmb.2008.401
Hemath Naveen, K.S., Kumar, G., Karthik, L., Bhaskara Rao, K. V. (2010). Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Archives of Applied Science Research, 2, 161–167.
Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12(1), 7-11. DOI: https://doi.org/10.4314/tjpr.v12i1.2
Jain, N., Bhargava, A., Majumdar, S., et al. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale, 3, 635–641. DOI: https://doi.org/10.1039/C0NR00656D
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050-1074. DOI: https://doi.org/10.3762/bjnano.9.98
Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and surfaces B: Biointerfaces, 65(1), 150-153. DOI: https://doi.org/10.1016/j.colsurfb.2008.02.018
Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials letters, 62(29), 4411-4413. DOI: https://doi.org/10.1016/j.matlet.2008.06.051
Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., et al. (2011). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13(1), 466-476. DOI: https://doi.org/10.3390/ijms13010466
Ma, L., Su, W., Liu, J. X., Zeng, X. X., et al. (2017). Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Materials Science and Engineering: C, 77, 963-971. DOI: https://doi.org/10.1016/j.msec.2017.03.294
Magdi, H.M., Mourad, M.H.E., & El-Aziz, M.M.A. (2014). Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt Journal of Experimental Biology, 10, 1–12.
Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Vanaja, M., & Annadurai, G. (2013). Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. Nanoscience and Nanotechnology, 3, 26-32.
Mukherjee, P., Roy, M., Mandal, B.P., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 75103. DOI: https://doi.org/10.1088/0957-4484/19/7/075103
Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M., & Issaabadi, Z. (2019). An introduction to nanotechnology. In M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, & Z. Issaabadi (eds.) Interface science and technology, 28, 1-27. DOI: https://doi.org/10.1016/B978-0-12-813586-0.00001-8
Omole, R. K., Torimiro, N., Alayande, S. O., & Ajenifuja, E. (2018). Silver nanoparticles synthesized from Bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit. Sustainable Chemistry and Pharmacy, 10, 33-40. DOI: https://doi.org/10.1016/j.scp.2018.08.005
Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2(1), 1-10. DOI: https://doi.org/10.1186/2228-5326-2-32
Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232-237. DOI: https://doi.org/10.1016/j.colsurfb.2012.08.018
Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied microbiology and biotechnology, 94(2), 287-293. DOI: https://doi.org/10.1007/s00253-012-3969-4
Rose, G. K., Soni, R., Rishi, P., & Soni, S. K. (2019). Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8(1), 144-156. DOI: https://doi.org/10.1515/gps-2018-0042
Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., et al. (2020). The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 10(8), 1566. DOI: https://doi.org/10.3390/nano10081566
Samuel, U., & Guggenbichler, J. P. (2004). Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. International journal of antimicrobial agents, 23, 75-78. DOI: https://doi.org/10.1016/j.ijantimicag.2003.12.004
Saravanan, M., Vemu, A.K., & Barik, S.K. (2011). Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surfaces B Biointerfaces, 88, 325–331. DOI: https://doi.org/10.1016/j.colsurfb.2011.07.009
Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry, 42(5), 919-923. DOI: https://doi.org/10.1016/j.procbio.2007.02.005
Shareef, J.U., Rani, M.N., Anand, S., & Rangappa, D. (2017). Synthesis and characterization of silver nanoparticles from Penicillium sps. Materials Today Proceedings, 4, 11923–11932. DOI: https://doi.org/10.1016/j.matpr.2017.09.113
Sulaiman, G. M., Hussien, H. T., & Saleem, M. M. (2015). Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bulletin of Materials Science, 38(3), 639-644. DOI: https://doi.org/10.1007/s12034-015-0905-0
Sunkar, S., & Nachiyar, C. V. (2012). Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine, 2(12), 953-959. DOI: https://doi.org/10.1016/S2221-1691(13)60006-4
Taha, Z. K., Hawar, S. N., & Sulaiman, G. M. (2019). Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnology letters, 41(8), 899-914. DOI: https://doi.org/10.1007/s10529-019-02699-x
van Hullebusch, E. D., Zandvoort, M. H., & Lens, P. N. (2003). Metal immobilisation by biofilms: mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology, 2(1), 9-33. DOI: https://doi.org/10.1023/B:RESB.0000022995.48330.55
Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials letters, 61(6), 1413-1418. DOI: https://doi.org/10.1016/j.matlet.2006.07.042
Xue, C., Ryan Penton, C., Shen, Z., Zhang, R., Huang, Q., Li, R., et al. (2015). Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Scientific reports, 5(1), 1-11. DOI: https://doi.org/10.1038/srep11124
Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369-1378. DOI: https://doi.org/10.1007/s13204-020-01318-w
Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 17(9), 1534. DOI: https://doi.org/10.3390/ijms17091534
Zhou, D., Jing, T., Chen, Y., Wang, F., et al. (2019). Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC microbiology, 19(1), 1-13. DOI: https://doi.org/10.1186/s12866-019-1531-6
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.