PRELIMINARY STUDY ON POTENTIAL EDIBLE COATINGS DERIVED FROM CARBOXYL METHYLCELLULOSE AND FUNGI CULTURED METABOLITES ON THE SHELF-LIFE EXTENSION OF SWEET-ORANGE (CITRUS SINENSIS)

Authors

  • Iyabo O Omomowo Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
  • Afeez A Adedayo Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
  • Olawale I Omomowo Department of Microbiology, University of Maiduguri, P.M.B. 1069 Maiduguri, Maiduguri, Borno State, Nigeria
  • Olusola N Majolagbe Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
  • Adijat F Ogundola Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria

DOI:

https://doi.org/10.18006/2021.9(5).663.671

Keywords:

Orange fruits, Postharvest storage-life improvement, Bioactive metabolites, Eco-friendly coatings, Synergistic effects

Abstract

This study focused on assessing the potential of formulated edible coatings derived from a metabolite of Trichoderma viride and Penicillium chrysogenum, combined with carboxyl methylcellulose (CMC) on the postharvest storage quality of orange fruits. The cultured metabolite of fungal bioagents combined with CMC, as well as glycerol (plasticizer), inadequate solution ratio based on wettability, was evaluated for microbiological quality and shelf-life extension of sweet orange. Thereafter, ascorbic acid, total soluble solids, pH, percentage weight loss, among other parameters were assessed for 7 weeks. The results of the study revealed that the pH of CMC + Trichoderma viride and CMC + P. chrysogenum coatings had 3.8 ± 0.02 and 3.17 ± 0.06 respectively, while it was reported 2.90 ± 0.04 for uncoated treatment. Also, the ascorbic acid and total soluble solids of the edible coated oranges were higher than the control. In addition, the percentage of weight loss was higher in the uncoated control compared to the potential edible coated oranges. Further, the microbial load count of the potential edible-coated oranges was less compared to the un-coated oranges. In conclusion, this formulated potential edible coating could be further improved upon and optimized for use in prolonging the storage of sweet oranges.

References

Abd-Elkader DY, Salem MZM, Komeil DA, Al-Huqail AA, Ali HM, Salah AH, Akrami M, Hassan HS (2021) Post-Harvest Enhancing and Botrytis cinerea Control of Strawberry Fruits Using Low Cost and Eco-Friendly Natural Oils. Agronomy 11 (6):1246. doi:10.3390/agronomy11061246.

Abd El-Razek E, Abd El-Motty EZ, Orabi SA, Abou-Elfotouh A (2019) Improving Fruit Quality of Mango Fruits cv. Zebda by Coating with Moringa and Green Tea Leaves Extracts under cold Storage. Middle East Journal of Agriculture Research 8 (4):1325-1343. doi:10.36632/mejar/2019.8.4.34.

Abd_Allah EF, Hashem A, Al-Huqail A (2011) Biologically-based strategies to reduce postharvest losses of tomato. African Journal of Biotechnology 10 (32):6040-6044.

Abhirami P, Modupalli N, Natarajan V (2020) Novel postharvest intervention using rice bran wax edible coating for shelf‐life enhancement of Solanum lycopersicum fruit. Journal of Food Processing and Preservation 44 (12):1-11. doi:10.1111/jfpp.14989.

Adetunji CO, Adejumo IO, Afolabi IS, Adetunji JB, Ajisejiri ES (2018) Prolonging the shelf life of ‘Agege Sweet’ orange with chitosan–rhamnolipid coating. Horticulture, Environment, and Biotechnology 59 (5):687-697. doi:10.1007/s13580-018-0083-2.

Amiri S, Nicknam Z, Radi M, Sayadi M, Bagheri F, Karimi Khorrami N, Abedi E (2021) Postharvest quality of orange fruit as influenced by salicylic acid, acetic acid, and carboxymethyl cellulose coating. Journal of Food Measurement and Characterization 15:3912-3930. doi:10.1007/s11694-021-00966-y.

Anjum MA, Akram H, Zaidi M, Ali S (2020) Effect of gum arabic and Aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of ‘Gola’ guava fruits. Scientia Horticulturae 271:109506. doi:https://doi.org/10.1016/j.scienta.2020.109506.

Arnon H, Granit R, Porat R, Poverenov E (2015) Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chemistry 166:465-472. doi:https://doi.org/10.1016/j.foodchem.2014.06.061.

AOAC (2006) Official Methods of Analysis. 18th Edition, Association of Official Analytical Chemists, Gaithersburgs, MD.

Atta OM, Manan S, Ahmed AAQ, Awad MF, Ul-Islam M, Subhan F, Ullah MW, Yang G (2021) Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application. Polymers 13 (14):2310. doi:10.3390/polym13142310.

Chen CY, Zheng JP, Wan CP, Chen M, Chen JY (2016) Effect of carboxymethyl cellulose coating enriched with clove oil on postharvest quality of ‘Xinyu’ mandarin oranges. Fruits 71 (5):319-327. doi:10.1051/fruits/2016019.

Costa JH, Wassano CI, Angolini CFF, Scherlach K, Hertweck C, Pacheco Fill T (2019) Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Scientific Reports 9 (1):1-11. doi:10.1038/s41598-019-55204-9.

Deepa N, Kaur C, Singh B, Kapoor HC (2006) Antioxidant activity in some red sweet pepper cultivars. Journal of Food Composition and Analysis 19 (6):572-578. doi:https://doi.org/10.1016/j.jfca.2005.03.005.

El-Otmani M, Ait-Oubahou A, Zacarías L (2011) 21 - Citrus spp: orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime. In: Yahia EM (Ed) Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing, pp 437-516e. doi:https://doi.org/10.1533/9780857092762.437.

Ghoshal G (2019) 4 - Beverages: A Potential Delivery System for Nutraceuticals. In: Grumezescu AM, Holban AM (Eds) Nutrients in Beverages, vol 12. Academic Press, pp 111-142. doi:https://doi.org/10.1016/B978-0-12-816842-4.00004-6.

Gong HJ, Fullerton C, Billing D, Burdon J (2020) Retardation of ‘Hayward’ kiwifruit tissue zone softening during storage by 1-methylcyclopropene. Scientia Horticulturae 259:108791. doi:https://doi.org/10.1016/j.scienta.2019.108791.

Hajebi Seyed R, Rastegar S, Faramarzi S (2021) Impact of edible coating derived from a combination of Aloe vera gel, chitosan and calcium chloride on maintain the quality of mango fruit at ambient temperature. Journal of Food Measurement and Characterization 15 (4):2932-2942. doi:10.1007/s11694-021-00861-6.

Hasan MU, Riaz R, Malik AU, Khan AS, Anwar R, Rehman RNU, Ali S (2021) Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. Journal of Food Biochemistry 45 (4):e13640. doi:https://doi.org/10.1111/jfbc.13640.

Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M (2021) An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers 13 (19):3271. doi:10.3390/polym13193271.

Ishangulyyev R, Kim S, Lee S (2019) Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 8 (8):297. doi:10.3390/foods8080297.

Jafarzadeh S, Mohammadi Nafchi A, Salehabadi A, Oladzad-abbasabadi N, Jafari SM (2021) Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science 291:102405. doi:https://doi.org/10.1016/j.cis.2021.102405.

Jalali A, Linke M, Geyer M, Mahajan PV (2020) Shelf-life prediction model for strawberry based on respiration and transpiration processes. Food Packaging and Shelf Life 25:100525. doi:https://doi.org/10.1016/j.fpsl.2020.100525.

Jiang Y, Li J, Jiang W (2005) Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. LWT - Food Science and Technology 38 (7):757-761. doi:https://doi.org/10.1016/j.lwt.2004.09.004.

Kitinoja L, AlHassan HY (2012) Identification of appropriate postharvest technologies for small scale horticultural farmers and marketers in Sub-Saharan Africa and South Asia – PART 1. Postharvest losses and quality assessments. Acta Horticulturae 31–40. https://doi.org/10.17660/ActaHortic.2012.934.1.

Maftoonazad N, Ramaswamy HS (2019) Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium). Coatings 9 (5):285. doi:10.3390/coatings9050285.

Mahawar MK, Jalgaonkar K, Bibwe B, Bhushan B, Meena VS, Sonkar RK (2020) Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulate L.): A review. Journal of Food Science and Technology 57 (3):799-815. doi:10.1007/s13197-019-04083-z.

Md Nor S, Ding P (2020) Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Research International 134:109208. doi:https://doi.org/10.1016/j.foodres.2020.109208.

Mishra S, Patel M (2020) Role of nutrition on immune system during COVID-19 pandemic. Journal of Food and Nutritional Health 3 (2):1-6.

Monjazeb Marvdashti L, Abdulmajid Ayatollahi S, Salehi B, Sharifi-Rad J, Abdolshahi A, Sharifi-Rad R, Maggi F (2020) Optimization of edible Alyssum homalocarpum seed gum-chitosan coating formulation to improve the postharvest storage potential and quality of apricot (Prunus armeniaca L.). Journal of Food Safety 40: e12805.

Munhuweyi K, Mpai S, Sivakumar D (2020) Extension of Avocado Fruit Postharvest Quality Using Non-Chemical Treatments. Agronomy 10 (2):212. doi:10.3390/agronomy10020212.

Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M (2020) Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules 164:304-320. doi:https://doi.org/10.1016/j.ijbiomac.2020.07.083.

Nayak SL, Sethi S, Sharma RR, Prajapati U (2019) Active Edible Coatings for Fresh Fruits and Vegetables. In: Gutiérrez TJ (ed) Polymers for Agri-Food Applications. Springer International Publishing, Cham, Pp 417-432. doi:10.1007/978-3-030-19416-1_21.

Nourozi F, Sayyari M (2020) Enrichment of Aloe vera gel with basil seed mucilage preserve bioactive compounds and postharvest quality of apricot fruits. Scientia Horticulturae 262:109041. doi:https://doi.org/10.1016/j.scienta.2019.109041.

Omomowo IO, Adedayo AA, Omomowo OI (2020) Biocontrol Potential of Rhizospheric Fungi from Moringa oleifera, their Phytochemicals and Secondary Metabolite Assessment Against Spoilage Fungi of Sweet Orange (Citrus sinensis). Asian Journal of Applied Sciences 8 (1):1-14.

Onah G, Okogu S, Nebeife R (2019) Isolation and Identification of Microorganisms Involved in the Spoilage of Orange Fruit (Citrus sinensis) Sold in Some Selected Markets in Enugu Metropolis, Nigeria. IDOSR Journal of Scientific Research 4 (1):47-54.

Padmaperuma G, Butler TO, Shuhaili FABA, Almalki WJ, Vaidyanathan S (2020) Chapter 25 - Microbial consortia: Concept and application in fruit crop management. In: Srivastava AK, Hu C (Eds) Fruit Crops. Elsevier, Pp 353-366. doi:https://doi.org/10.1016/B978-0-12-818732-6.00025-3.

Parven A, Sarker MR, Megharaj M, Md. Meftaul I (2020) Prolonging the shelf life of Papaya (Carica papaya L.) using Aloe vera gel at ambient temperature. Scientia Horticulturae 265:109228. doi:https://doi.org/10.1016/j.scienta.2020.109228.

Pirozzi A, Ferrari G, Donsì F (2021) The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables. Coatings 11 (8):990. doi:10.3390/coatings11080990.

Shah S, Jahangir M, Qaisar M, Khan S, Mahmood T, Saeed M, Farid A, Liaquat M (2015) Storage Stability of Kinnow Fruit (Citrus reticulata) as Affected by CMC and Guar Gum-Based Silver Nanoparticle Coatings. Molecules 20 (12):22645-22661. doi:10.3390/molecules201219870.

Sharma P, Kehinde BA, Kaur S, Vyas P (2019) Application of edible coatings on fresh and minimally processed fruits: a review. Nutrition & Food Science 49 (4):713-738. doi:10.1108/nfs-08-2018-0246.

Shi Z, Wang F, Lu Y, Deng J (2018) Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit. Scientia Horticulturae 233:54-60. doi:https://doi.org/10.1016/j.scienta.2018.01.039.

Sogvar OB, Koushesh Saba M, Emamifar A (2016) Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology 114:29-35. doi:https://doi.org/10.1016/ j.postharvbio.2015.11.019.

Terao D, de Lima Nechet K, Ponte MS, de Holanda Nunes Maia A, de Almeida Anjos VD, de Almeida Halfeld-Vieira B (2017) Physical postharvest treatments combined with antagonistic yeast on the control of orange green mold. Scientia Horticulturae 224:317-323. doi:https://doi.org/10.1016/ j.scienta.2017.06.038.

Tkaczewska J (2020) Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends in Food Science & Technology 106:298-311. doi:https://doi.org/10.1016/j.tifs.2020.10.022.

Tosati JV, de Oliveira EF, Oliveira JV, Nitin N, Monteiro AR (2018) Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control 84:177-185. doi:https://doi.org/10.1016/ j.foodcont.2017.07.026.

Tosati JV, Messias VC, Carvalho PIN, Rodrigues Pollonio MA, Meireles MAA, Monteiro AR (2017) Antimicrobial Effect of Edible Coating Blend Based on Turmeric Starch Residue and Gelatin Applied onto Fresh Frankfurter Sausage. Food and Bioprocess Technology 10 (12):2165-2175. doi:10.1007/s11947-017-1985-1.

Xing Y, Yang H, Guo X, Bi X, Liu X, Xu Q, Wang Q, Li W, Li X, Shui Y, Chen C, Zheng Y (2020) Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae 263:109135. doi:https://doi.org/10.1016/ j.scienta.2019.109135.

Yang Z, Zou X, Li Z, Huang X, Zhai X, Zhang W, Shi J, Tahir HE (2019) Improved Postharvest Quality of Cold Stored Blueberry by Edible Coating Based on Composite Gum Arabic/Roselle Extract. Food and Bioprocess Technology 12 (9):1537-1547. doi:10.1007/s11947-019-02312-z.

Zhao H, Wang L, Belwal T, Jiang Y, Li D, Xu Y, Luo Z, Li L (2020) Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydrate Polymers 235:115973. doi:https://doi.org/10.1016/j.carbpol.2020.115973.

Zhou Y, Ma J, Xie J, Deng L, Yao S, Zeng K (2018) Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biology and Technology 142:81-92. doi:https://doi.org/10.1016/j.postharvbio.2018.01.021.

Downloads

Published

2021-10-30

How to Cite

Omomowo, I. O. ., Adedayo, A. A. ., Omomowo, O. I. ., Majolagbe, O. N. ., & Ogundola, A. F. . (2021). PRELIMINARY STUDY ON POTENTIAL EDIBLE COATINGS DERIVED FROM CARBOXYL METHYLCELLULOSE AND FUNGI CULTURED METABOLITES ON THE SHELF-LIFE EXTENSION OF SWEET-ORANGE (CITRUS SINENSIS). Journal of Experimental Biology and Agricultural Sciences, 9(5), 663–671. https://doi.org/10.18006/2021.9(5).663.671

Issue

Section

RESEARCH ARTICLES