A Review on Bacterial Degradation of Benzo[a]pyrene and Its Impact on Environmental Health
DOI:
https://doi.org/10.18006/2022.10(6).1253.1265Keywords:
PAHs, Aerobic, Anaerobic, Biodegradation, Mono, Di-oxygenase, CarcinogenicAbstract
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) having a high molecular weight. Benzo[a]pyrene and other PAHs are induces severe acute or chronic human health hazards and are extremely carcinogenic, mutagenic, immunotoxic, and teratogenic. Microorganisms play a crucial part in the degradation of benzo[a]pyrene from polluted environments. Such micro-organisms synthesize monooxygenase and di-oxygenase enzymes that proceed with the aerobic or anaerobic catabolic degradations of benzo[a]pyrene. Bioaugmentation, biomineralization, and biostimulation methods can be used for the decontamination of benzo[a]pyrene from hydrocarbon contaminated sites. In this review paper, we thoroughly explained the impacts of benzo[a]pyrene pollution on human health and the environment. Further, this study also described various pathways regarding the bio-degradation of benzo[a]pyrene and also an updated overview of future prospects of benzo[a]pyrene biodegradation.
References
Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107-123. DOI: https://doi.org/10.1016/j.ejpe.2015.03.011
Adams, G. O., Tawari-Fufeyin, P., & Igelenyah, E. (2014). Bioremediation of spent oil contaminated soils using poultry litter. Research Journal in Engineering and Applied Sciences, 3(2), 124-130.
Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2019). Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and their health risk assessment. Archives of environmental contamination and toxicology, 76(4), 657-669. DOI: https://doi.org/10.1007/s00244-019-00617-w
Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental management, 60(4), 758-783. DOI: https://doi.org/10.1007/s00267-017-0896-2
Arulazhagan, P., & Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Marine pollution bulletin, 58(2), 256-262. DOI: https://doi.org/10.1016/j.marpolbul.2008.09.017
Aydin, S., Karaçay, H. A., Shahi, A., Gökçe, S., Ince, B., & Ince, O. (2017). Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews, 31(2), 61-72. DOI: https://doi.org/10.1016/j.fbr.2016.12.001
Bak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S., & Werck-Reichhart, D. (2011). Cytochromes P450. The Arabidopsis Book/American Society of Plant Biologists, pp. 9. DOI: https://doi.org/10.1199/tab.0144
Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., et al. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021, Article ID 8849512. https://doi.org/10.1155/ 2021/8849512 DOI: https://doi.org/10.1155/2021/8849512
Bhatt, K. K., Lily, M. K., Joshi, G., & Dangwal, K. (2018). Benzo (a) pyrene degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Turkish Journal of Biochemistry, 43(6), 693-701. DOI: https://doi.org/10.1515/tjb-2017-0334
Borji, H., Ayoub, G. M., Al-Hindi, M., Malaeb, L., & Hamdan, H. Z. (2020). Nanotechnology to remove polychlorinated biphenyls and polycyclic aromatic hydrocarbons from water: a review. Environmental Chemistry Letters, 18(3), 729-746. DOI: https://doi.org/10.1007/s10311-020-00979-x
Bukowska, B., Mokra, K., & Michałowicz, J. (2022). Benzo [a] pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. International Journal of Molecular Sciences, 23(11), 6348. DOI: https://doi.org/10.3390/ijms23116348
Burchiel, S. W. (2005). Polycyclic aromatic hydrocarbons (PAHs) and the immune system. In: H.W., Vohr, (Eds.) Encyclopedic Reference of Immunotoxicology (pp 515–518). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-27806-0_1192
Cao, H., Wang, C., Liu, H., Sun, H.(2020). Enzyme activities during Benzo [a] pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Scientific Reports, 10, 865. DOI: https://doi.org/10.1038/s41598-020-57692-6
Cébron, A., Norini, M. P., Beguiristain, T., & Leyval, C. (2008). Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73(2), 148-159. DOI: https://doi.org/10.1016/j.mimet.2008.01.009
Chan, S. M. N., Luan, T., Wong, M. H., & Tam, N. F. Y. (2006).Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environmental Toxicology and Chemistry, 25(7), 1772-1779. DOI: https://doi.org/10.1897/05-354R.1
Chen, B., Huang, J., Yuan, K., Lin, L., Wang, X., Yang, L., & Luan, T. (2016). Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. Marine Pollution Bulletin, 105(1), 73-80. DOI: https://doi.org/10.1016/j.marpolbul.2016.02.054
Chen, X., Shi, J., Chen, Y., Xu, X., Chen, L., Wang, H., & Hu, T. (2007).Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Applied microbiology and biotechnology, 74(4), 881-889. DOI: https://doi.org/10.1007/s00253-006-0592-2
Chulalaksananukul, S., Gadd, G. M., Sangvanich, P., Sihanonth, P., Piapukiew, J., & Vangnai, A. S. (2006). Biodegradation of benzo (a) pyrene by a newly isolated Fusarium sp. FEMS microbiology letters, 262(1), 99-106. DOI: https://doi.org/10.1111/j.1574-6968.2006.00375.x
Darajeh, N., Alizadeh, H., Farraji, H., Park, J., Barghi, A., & Rezania, S. (2020). Removal of polycyclic aromatic hydrocarbons (PAHs) by different physicochemical methods: A mini-review. Journal of Energy and Environmental Pollution, 1(2), 44-50.
Dell’Anno, F., Rastelli, E., Sansone, C., Brunet, C., Ianora, A., & Dell’Anno, A. (2021). Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms, 9(8), 1695. DOI: https://doi.org/10.3390/microorganisms9081695
Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K., & Megharaj, M. (2019). Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: a comprehensive review. Reviews of Environmental Contamination and Toxicology, 251, 25-108. DOI: https://doi.org/10.1007/398_2019_29
Dudhagara, D. R., & Dave, B. P. (2018). Mycobacterium as Polycyclic Aromatic Hydrocarbons (PAHs) Degrader. In (Ed.), Mycobacterium - Research and Development. IntechOpen. https://doi.org/10.5772/intechopen.73546 DOI: https://doi.org/10.5772/intechopen.73546
Elyamine, A. M., Kan, J., Meng, S., Tao, P., Wang, H., & Hu, Z. (2021). Aerobic and anaerobic bacterial and fungal degradation of pyrene: mechanism pathway including biochemical reaction and catabolic genes. International Journal of Molecular Sciences, 22(15), 8202. DOI: https://doi.org/10.3390/ijms22158202
Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Frontiers in microbiology, 7, 1369. https://doi.org/10.3389/fmicb.2016.01369. DOI: https://doi.org/10.3389/fmicb.2016.01369
Gibson, D. T. (1999). Beijerinckia sp strain B1: a strain by any other name. Journal of Industrial Microbiology and Biotechnology, 23(4-5), 284-293. DOI: https://doi.org/10.1038/sj.jim.2900715
Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current opinion in biotechnology, 11(3), 236-243. DOI: https://doi.org/10.1016/S0958-1669(00)00090-2
Gibson, J. J. (1975). Events are perceivable but time is not. In: J.T. Fraser, & N. Lawrence (eds) In The study of time II (pp. 295-301). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-50121-0_22
Govarthanan, M., Fuzisawa, S., Hosogai, T., & Chang, Y. C. (2017). Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC advances, 7(34), 20716-20723. DOI: https://doi.org/10.1039/C6RA28687A
Gupte, A., Tripathi, A., Patel, H., Rudakiya, D., & Gupte, S. (2016). Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. The Open Biotechnology Journal, 10(Sup 2), 363-368. DOI: https://doi.org/10.2174/1874070701610010363
Hesham, A.el-L., Mawad, A. M., Mostafa, Y. M., & Shoreit, A. (2014). Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. BioMed research international, 2014, 127674. https://doi.org/10.1155/2014/127674 DOI: https://doi.org/10.1155/2014/127674
Houshani, M., Salehi-Lisar, S.Y., Motafakkerazad, R., & Movafeghi, A. (2021). Proposed Pathways for Phytodegradation of Phenanthrene and Pyrene in Maize (Zea Mays L.)Using GC-Ms Analysis. https://doi.org/10.21203/rs.3.rs-1110084/v1. DOI: https://doi.org/10.21203/rs.3.rs-1110084/v1
Hsu, G. W., Huang, X., Luneva, N. P., Geacintov, N. E., & Beese, L. S. (2005). Structure of a high fidelity DNA polymerase bound to a benzo [a] pyrene adduct that blocks replication. Journal of Biological Chemistry, 280(5), 3764-3770. DOI: https://doi.org/10.1074/jbc.M411276200
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the evaluation of carcinogenic risks to humans, 92, 1.
Jacques, R. J., Santos, E. C., Bento, F. M., Peralba, M. C., Selbach, P. A., Sá, E. L., & Camargo, F. A. (2005). Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International biodeterioration & biodegradation, 56(3), 143-150. DOI: https://doi.org/10.1016/j.ibiod.2005.06.005
Johnsen, A. R., & Karlson, U. (2007). Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Applied Microbiology and Biotechnology, 76(3), 533-543. DOI: https://doi.org/10.1007/s00253-007-1045-2
Jong-Su, S., Young-Soo, K., & Qing, X. L. (2009).Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health, 6, 278-309. DOI: https://doi.org/10.3390/ijerph6010278
Juhasz, A. L., Stanley, G. A., & Britz, M. L. (2002). Metabolite repression inhibits degradation of benzo [a] pyrene and dibenz [a, h] anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology and Biotechnology, 28(2), 88-96. DOI: https://doi.org/10.1038/sj.jim.7000216
Keyte, I. J. (2015). The concentrations, behaviour and fate of polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives in the urban atmosphere. Doctoral dissertation to the University of Birmingham, Birmingham, United Kingdom.
Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. Journal of Bacteriology, 189(2), 464-472. DOI: https://doi.org/10.1128/JB.01310-06
Kong, X., Dong, R., King, T., Chen, F., & Li, H. (2022).Biodegradation potential of Bacillus sp. PAH-2 on PAHs for oil-contaminated seawater. Molecules, 27(3), 687. DOI: https://doi.org/10.3390/molecules27030687
Kour, D., Khan, S. S., Kour, H., Kaur, T., et al. (2022). Microbe-mediated bioremediation: Current research and future challenges. Journal of Applied Biology and Biotechnology, 10(2), 6-24. DOI: https://doi.org/10.7324/JABB.2022.10s202
Kumar, M., Leon, V., Materano, A. D. S., Ilzins, O. A., Galindo-Castro, I., & Fuenmayor, S. L. (2006). Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Zeitschrift für Naturforschung C, 61(3-4), 203-212. DOI: https://doi.org/10.1515/znc-2006-3-409
Kumari, B., Chandra, H., & Chandra, R. (2022). Detection of Pyrene Degrading Bacterial Strains (LOP-9 Staphyloccous aureus and GWP-2 Mycobacterium vaanbaalenii) and their Metabolic Products. Cleaner Chemical Engineering, 4, 100080. https://doi.org/10.1016/j.clce.2022.100080. DOI: https://doi.org/10.1016/j.clce.2022.100080
Kungwani, N., Shukla, S. K., Rao, T. S., & Das, S. (2022). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons: current status and future perspectives. Microbial Biodegradation and Bioremediation, 547-570. https://doi.org/ 10.1016/B978-0-323-85455-9.00021-7. DOI: https://doi.org/10.1016/B978-0-323-85455-9.00021-7
Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944-968. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.115
Ławniczak, Ł., Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J., & Chrzanowski, Ł. (2020). Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules, 25(4), 856. DOI: https://doi.org/10.3390/molecules25040856
Li, P., Li, H., Stagnitti, F., Wang, X., et al. (2005). Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp. Bulletin of Environmental Contamination & Toxicology, 75(3), 443-450. DOI: https://doi.org/10.1007/s00128-005-0773-1
Li, Y., Li, W., Ji, L., Song, F., et al. (2022). Effects of Salinity on the Biodegradation of Polycyclic Aromatic Hydrocarbons in Oilfield Soils Emphasizing Degradation Genes and Soil Enzymes. Frontiers in microbiology, 12, 824319. https://doi.org/10.3389/ fmicb.2021.824319 DOI: https://doi.org/10.3389/fmicb.2021.824319
Liang, L., Song, X., Kong, J., Shen, C., Huang, T., & Hu, Z. (2014). Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1. Biodegradation, 25(6), 825-833. DOI: https://doi.org/10.1007/s10532-014-9702-5
Lily, M. K., Bahuguna, A., Dangwal, K., & Garg, V. (2009).Degradation of benzo [a] pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Brazilian journal of microbiology, 40, 884-892. DOI: https://doi.org/10.1590/S1517-83822009000400020
Lindeman, T. E., Poirier, M. C., & Divi, R. L. (2011). The resveratrol analogue, 2, 3′, 4, 5′-tetramethoxystilbene, does not inhibit CYP gene expression, enzyme activity and benzo [a] pyrene–DNA adduct formation in MCF-7 cells exposed to benzo [a] pyrene. Mutagenesis, 26(5), 629. DOI: https://doi.org/10.1093/mutage/ger024
Logeshwaran, P., Subashchandrabose, S. R., Krishnan, K., Sivaram, A. K., et al. (2022). Polycyclic aromatic hydrocarbons biodegradation by fenamiphos degrading Microbacterium esteraromaticum MM1. Environmental Technology & Innovation, 27, 102465. DOI: https://doi.org/10.1016/j.eti.2022.102465
Lozada, M., Riva Mercadal, J. P., Guerrero, L. D., Di Marzio, W. D., Ferrero, M. A., & Dionisi, H. M. (2008). Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC microbiology, 8(1), 1-13. DOI: https://doi.org/10.1186/1471-2180-8-50
Mao, J., & Guan, W. (2016). Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 66(5), 399-405. DOI: https://doi.org/10.1080/09064710.2015.1137629
Mineki, S., Suzuki, K., Iwata, K., Nakajima, D., & Goto, S. (2015). Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycyclic Aromatic Compounds, 35(1), 120-128. DOI: https://doi.org/10.1080/10406638.2014.937007
Mishra, S., & Singh, S. N. (2014). Biodegradation of benzo (a) pyrene mediated by catabolic enzymes of bacteria. International Journal of Environmental Science and Technology, 11(6), 1571-1580. DOI: https://doi.org/10.1007/s13762-013-0300-6
Mishra, S., Lin, Z., Pang, S., Zhang, W., Bhatt, P., & Chen, S. (2021). Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology, 9, 632059. DOI: https://doi.org/10.3389/fbioe.2021.632059
Montuori, P., De Rosa, E., Di Duca, F., De Simone, B., et al. (2022). Polycyclic Aromatic Hydrocarbons (PAHs) in the Dissolved Phase, Particulate Matter, and Sediment of the Sele River, Southern Italy: A Focus on Distribution, Risk Assessment, and Sources. Toxics, 10(7), 401. DOI: https://doi.org/10.3390/toxics10070401
Moody, J. D., Freeman, J. P., Fu, P. P., & Cerniglia, C. E. (2004). Degradation of benzo [a] pyrene by Mycobacterium vanbaalenii PYR-1. Applied and Environmental Microbiology, 70(1), 340-345. DOI: https://doi.org/10.1128/AEM.70.1.340-345.2004
Mortazavi Mehrizi, M., Yousefinejad, S., Jafari, S., Baghapour, M. A., et al. (2022). Bioremediation and microbial degradation of benzo [a] pyrene in aquatic environments: a systematic review. International Journal of Environmental Analytical Chemistry, 102(15), 3508-3523. DOI: https://doi.org/10.1080/03067319.2020.1770743
Nieman, J. K. C., Sims, R. C., McLean, J. E., Sims, J. L., & Sorensen, D. L. (2001). Fate of pyrene in contaminated soil amended with alternate electron acceptors. Chemosphere, 44(5), 1265-1271. DOI: https://doi.org/10.1016/S0045-6535(00)00304-0
Nzila, A., & Musa, M. M. (2021). Current Knowledge and Future Challenges on Bacterial Degradation of the Highly Complex Petroleum Products Asphaltenes and Resins. Frontiers in Environmental Science, 554. https://doi.org/10.3389/ fenvs.2021.779644. DOI: https://doi.org/10.3389/fenvs.2021.779644
Nzila, A., Musa, M. M., Afuecheta, E., Thukair, A., Sankaran, S., Xiang, L., & Li, Q. X. (2022). Benzo [a] pyrene biodegradation by multiple and individual mesophilic bacteria in axenic conditions and in soil samples. bioRxiv 2022.05.27.493769; doi: https://doi.org/10.1101/2022.05.27.493769 DOI: https://doi.org/10.1101/2022.05.27.493769
Nzila, A., Musa, M. M., Sankara, S., Al-Momani, M., Xiang, L., & Li, Q. X. (2021). Degradation of benzo [a] pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PloS one, 16(2), e0247723. DOI: https://doi.org/10.1371/journal.pone.0247723
Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813. DOI: https://doi.org/10.3389/fmicb.2020.562813
Peng, R. H., Xiong, A. S., Xue, Y., Fu, X. Y., et al. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS microbiology reviews, 32(6), 927-955. DOI: https://doi.org/10.1111/j.1574-6976.2008.00127.x
Peng, X., Xu, P. F., Du, H., Tang, Y., et al. (2018). Degradation of polycyclic aromatic hydrocarbons: a review. Applied Ecology and Environmental Research, 16(5), 6419-6440. DOI: https://doi.org/10.15666/aeer/1605_64196440
Pimviriyakul, P., Wongnate, T., Tinikul, R., & Chaiyen, P. (2020). Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microbial Biotechnology, 13(1), 67-86. DOI: https://doi.org/10.1111/1751-7915.13488
Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, Dou J (2018) Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 49(2):258–268 DOI: https://doi.org/10.1016/j.bjm.2017.04.014
Qin W, Zhu Y, Fan F, Wang Y, Liu X, Ding A, Dou J (2017) Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: degradation pathway and effects of limiting electron acceptors or carbon source. Biochemical Engineering Journal, 121, 131–138 DOI: https://doi.org/10.1016/j.bej.2017.02.001
Rajpara, R. K., Dudhagara, D. R., Bhatt, J. K., Gosai, H. B., & Dave, B. P. (2017). Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: Occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Marine pollution bulletin, 119(2), 231-238. DOI: https://doi.org/10.1016/j.marpolbul.2017.04.039
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric environment, 42(13), 2895-2921. DOI: https://doi.org/10.1016/j.atmosenv.2007.12.010
Rentz, J. A., Alvarez, P. J., & Schnoor, J. L. (2008). Benzo [a] pyrene degradation by Sphingomonas yanoikuyae JAR02. Environmental pollution, 151(3), 669-677. DOI: https://doi.org/10.1016/j.envpol.2007.02.018
Rose, M., Holland, J., Dowding, A., Petch, S. R., White, S., Fernandes, A., & Mortimer, D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1-9. DOI: https://doi.org/10.1016/j.fct.2014.12.018
Rubin, H. (2001). Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis, 22(12), 1903-1930.. DOI: https://doi.org/10.1093/carcin/22.12.1903
Safonova, E., Kvitko, K., Kuschk, P., Möder, M., & Reisser, W. (2005). Biodegradation of Phenanthrene by the Green Alga Scenedesmus obliquus ES‐55. Engineering in life sciences, 5(3), 234-239. DOI: https://doi.org/10.1002/elsc.200520077
Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W., & Warshawsky, D. (1996). Degradation of pyrene, benz [a] anthracene, and benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 62(1), 13-19. DOI: https://doi.org/10.1128/aem.62.1.13-19.1996
Sowada, J., Schmalenberger, A., Ebner, I., Luch, A., & Tralau, T. (2014). Degradation of benzo [a] pyrene by bacterial isolates from human skin. FEMS microbiology ecology, 88(1), 129-139. DOI: https://doi.org/10.1111/1574-6941.12276
Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169-195. DOI: https://doi.org/10.1007/s10311-007-0095-0
Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Reviews of environmental contamination and toxicology, 234, 49–133. https://doi.org/ 10.1007/978-3-319-10638-0_2. DOI: https://doi.org/10.1007/978-3-319-10638-0_2
Story, S. P., Parker, S. H., Hayasaka, S. S., Riley, M. B., & Kline, E. L. (2001). Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505. Journal of Industrial Microbiology and Biotechnology, 26(6), 369-382. DOI: https://doi.org/10.1038/sj.jim.7000149
Subashchandrabose, S. R., Krishnan, K., Gratton, E., Megharaj, M., & Naidu, R. (2014). Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. Environmental science & technology, 48(16), 9152-9160. DOI: https://doi.org/10.1021/es500387v
Sun, J., Pan, L., Tsang, D. C., Zhan, Y., Zhu, L., & Li, X. (2018). Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 615, 724-740. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.271
Tao, X. Q., Lu, G. N., Dang, Z., Yang, C., & Yi, X. Y. (2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry, 42(3), 401-408. DOI: https://doi.org/10.1016/j.procbio.2006.09.018
Tielens, A. G. (2005). The physics and chemistry of the interstellar medium.Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511819056
Tsibart, A., Gennadiev, A., Koshovskii, T., & Watts, A. (2014). Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5(2), 1305-1317. DOI: https://doi.org/10.5194/se-5-1305-2014
Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231-241. DOI: https://doi.org/10.1007/s10532-010-9394-4
Umannová, L., Machala, M., Topinka, J., Schmuczerová, J., et al. (2011). Benzo [a] pyrene and tumor necrosis factor-α coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells. Toxicology letters, 206(2), 121-129. DOI: https://doi.org/10.1016/j.toxlet.2011.06.029
Wang, D., Ma, J., Li, H., & Zhang, X. (2018).Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the Loess Plateau, China. International Journal of Environmental Research and Public Health, 15(8), 1785. DOI: https://doi.org/10.3390/ijerph15081785
World Health Organization. (2003). Lead in drinking-water: background document for development of WHO guidelines for drinking-water quality (No. WHO/SDE/WSH/03.04/09). World Health Organization.
Zada, S., Zhou, H., Xie, J., Hu, Z., Ali, S., Sajjad, W., & Wang, H. (2021). Bacterial degradation of pyrene: biochemical reactions and mechanisms. International Biodeterioration & Biodegradation, 162, 105233. DOI: https://doi.org/10.1016/j.ibiod.2021.105233
Zhao, H. P., Wu, Q. S., Wang, L., Zhao, X. T., & Gao, H. W. (2009). Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. Journal of hazardous materials, 164(2-3), 863-869. DOI: https://doi.org/10.1016/j.jhazmat.2008.08.098
Zheng, H., Xing, X., Hu, T., Zhang, Y., Zhang, J., Zhu, G., & Qi, S. (2018). Biomass burning contributed most to the human cancer risk exposed to the soil-bound PAHs from Chengdu Economic Region, western China. Ecotoxicology and environmental safety, 159, 63-70. DOI: https://doi.org/10.1016/j.ecoenv.2018.04.065
Zheng, Z., & Obbard, J. P. (2003). Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Environmental Science and Pollution Research, 10(3), 173-176. DOI: https://doi.org/10.1065/espr2002.07.126
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.