Comprehensive Review of Aquaponic, Hydroponic, and Recirculating Aquaculture Systems
DOI:
https://doi.org/10.18006/2022.10(6).1266.1289Keywords:
Hydroponics, Aquaponics, Types, Vegetables, Recirculatory aquaculture system, ApplicationsAbstract
Hydroponics and aquaponics are emergent agricultural techniques that offer several environmental solutions. It is anticipated that the hydroponic systems will result in a more significant profit from selling vegetables and other plants. The use of new technologies, such as hydroponics and aquaponics, has been demonstrated to increase the number of plants that can be grown. The recirculatory aquaculture system makes it possible to multiply fish production while consuming fewer resources. Essential factors of this technology include higher yield, safety, and water management. In addition, the scope of potential future research in hydroponics and aquaponics has been discussed. Furthermore, the paper identifies and discusses the various applications of hydroponics and aquaponics in agriculture.
References
Abbey, M., Anderson, N. O., Yue, C., Schermann, M., Phelps, N., Venturelli, P., & Vickers, Z. (2019). Lettuce (Lactuca sativa) Production in Northern Latitudinal Aquaponic Growing Conditions. HortScience, 54(10), 1757–1761. https://doi.org/ 10.21273/HORTSCI14088-19 DOI: https://doi.org/10.21273/HORTSCI14088-19
Adhikari, R., Rauniyar, S., Pokhrel, N., Wagle, A., Komai, T., & Paudel, S. R. (2020). Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges. SN Applied Sciences, 2(7). https://doi.org/10.1007/s42452-020-2996-5 DOI: https://doi.org/10.1007/s42452-020-2996-5
Al Hamedi, F. H. A. A., Karthishwaran, K., & Alyafei, M. A. M. (2021). Hydroponic wheat production using fresh water and treated wastewater under the semi-arid region. Emirates Journal of Food and Agriculture, 33(2), 178–186. https://doi.org/10.9755/ ejfa.2021.v33.i2.2620 DOI: https://doi.org/10.9755/ejfa.2021.v33.i2.2620
Alam, M. N. H. Z., Othman, N. S. I. A., Samsudin, S. A., Johari, A., Hassim, M. H., & Kamaruddin, M. J. (2020). Carbonized rice husk and cocopeat as alternative media bed for aquaponic system. Sains Malaysiana, 49(3), 483–492. https://doi.org/10.17576/jsm-2020-4903-03 DOI: https://doi.org/10.17576/jsm-2020-4903-03
Andriani, Y. Z., Dhahiyat, Y., Hamdani, H., & Dewi, D. R. (2019). Performance of Lettuce and Water Spinach in Koi Fish-based Aquaponics System. Asian Journal of Fisheries and Aquatic Research, 1–7. https://doi.org/10.9734/ajfar/2019/v3i430039 DOI: https://doi.org/10.9734/ajfar/2019/v3i430039
Asaduzzaman, M., Niu, G., & Asao, T. (2022). Editorial: Nutrients Recycling in Hydroponics: Opportunities and Challenges Toward Sustainable Crop Production Under Controlled Environment Agriculture. Frontiers in Plant Science, 13(March). https://doi.org/ 10.3389/fpls.2022.845472 DOI: https://doi.org/10.3389/fpls.2022.845472
Askari-Khorasgani, O., & Pessarakli, M. (2020a). Tomato (Solanum lycopersicum) culture in vermi-aquaponic systems: I. Cultural practices. Journal of Plant Nutrition, 43(11), 1712–1725. https://doi.org/10.1080/01904167.2020.1739306 DOI: https://doi.org/10.1080/01904167.2020.1739306
Askari-Khorasgani, O., & Pessarakli, M. (2020b). Tomato (Solanum lycopersicum) culture in vermi-aquaponic systems: III. Strategies for sustainable and economic development: Co-cultivation with aquatic species. Journal of Plant Nutrition, 43(11), 1740–1756). https://doi.org/10.1080/01904167.2020.1739308 DOI: https://doi.org/10.1080/01904167.2020.1739308
Atique, F., Lindholm-Lehto, P., & Pirhonen, J. (2022). Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems? Water (Switzerland), 14(9). https://doi.org/10.3390/w14091447 DOI: https://doi.org/10.3390/w14091447
Balashova, I., Sirota, S., & Pinchuk, Y. (2019). Vertical vegetable growing: Creating tomato varieties for multi-tiered hydroponic installations. IOP Conference Series: Earth and Environmental Science, 395(1). https://doi.org/10.1088/1755-1315/395/1/012079 DOI: https://doi.org/10.1088/1755-1315/395/1/012079
Bawiec, A. (2019). Efficiency of nitrogen and phosphorus compounds removal in hydroponic wastewater treatment plant. Environmental Technology (United Kingdom), 40(16), 2062–2072. https://doi.org/10.1080/09593330.2018.1436595 DOI: https://doi.org/10.1080/09593330.2018.1436595
Bawiec, A., Pawęska, K., & Pulikowski, K. (2020). LED light use for the improvement of wastewater treatment in the hydroponic system. Environmental Technology (United Kingdom), 41(16), 2024–2036. https://doi.org/10.1080/09593330.2018.1554007 DOI: https://doi.org/10.1080/09593330.2018.1554007
Bawiec, A., Pawęska, K., Pulikowski, K., & Kajewska-Szkudlarek, J. (2018). Influence of Insolation on the Efficiency of NO3 Removal from Wastewater Treated in the Hydroponic System. Water, Air, and Soil Pollution, 229(7). https://doi.org/10.1007/ s11270-018-3888-9 DOI: https://doi.org/10.1007/s11270-018-3888-9
Bianchini, P. P. T., Cardoso, S. B., Pantaleão, J. A., & Okura, M. H. (2020). Analysis of lettuce (Lactuca sativa) production in different substrates in an aquaponic system using an IBC container. International Journal of Advanced Engineering Research and Science, 7(5), 67–73. https://doi.org/10.22161/ijaers.75.9 DOI: https://doi.org/10.22161/ijaers.75.9
Biswas, S., Chandra, B., Viswavidyalaya, K., Das, R., Chandra, B., & Viswavidyalaya, K. (2022). Hydroponics : A Promising Modern Intervention in Agriculture. Agricultural & Food E Newsletter, 4 (1), 334-338.
Blanchard, C., Wells, D. E., Pickens, J. M., & Blersch, D. M. (2020). Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae, 6(1). https://doi.org/10.3390/horticulturae6010010 DOI: https://doi.org/10.3390/horticulturae6010010
Buckets, P. D. (2018). Dutch Bucket Row Kits. 1–21. Retrived from https://www.growspan.com/growspan-industries/hydrocycle-growing-systems/dutch-bucket-systems/.
Buzby, K. M., Waterland, N. L., Semmens, K. J., & Lin, L. S. (2016). Evaluating aquaponic crops in a freshwater flow-through fish culture system. Aquaculture, 460, 15–24. https://doi.org/10.1016/j.aquaculture.2016.03.046 DOI: https://doi.org/10.1016/j.aquaculture.2016.03.046
Calabria, J. L., Lens, P. N. L., & Yeh, D. H. (2019). Zeolite Ion Exchange to Facilitate Anaerobic Membrane Bioreactor Wastewater Nitrogen Recovery and Reuse for Lettuce Fertigation in Vertical Hydroponic Systems. Environmental Engineering Science, 36(6), 690–698. https://doi.org/10.1089/ees.2018.0439 DOI: https://doi.org/10.1089/ees.2018.0439
Calone, R., Pennisi, G., Morgenstern, R., Sanyé-Mengual, E., et al. (2019). Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Science of the Total Environment, 687, 759–767. https://doi.org/10.1016/j.scitotenv.2019.06.167 DOI: https://doi.org/10.1016/j.scitotenv.2019.06.167
Chen, P., Zhu, G., Kim, H.J., Brown, P. B., & Huang, J.Y. (2020). Comparative Life Cycle Assessment of Aquaponics and Hydroponics in the Midwestern United States. Journal of Cleaner Production, 122888. https://doi.org/10.1016/j.jclepro.2020.122888 DOI: https://doi.org/10.1016/j.jclepro.2020.122888
Chowdhury, M., Islam, M. N., Reza, M. N., Ali, M., et al. (2021). Sensor-Based Nutrient Recirculation for Aeroponic Lettuce Cultivation. Journal of Biosystems Engineering, 46(1), 81–92. https://doi.org/10.1007/s42853-021-00089-8 DOI: https://doi.org/10.1007/s42853-021-00089-8
Cifuentes‐Torres, L., Mendoza‐Espinosa, L. G., Correa‐Reyes, G., & Daesslé, L. W. (2020). Hydroponics with wastewater: a review of trends and opportunities. Water and Environment Journal, 12617. https://doi.org/10.1111/wej.12617 DOI: https://doi.org/10.1111/wej.12617
Da Silva Correia, I. K., Santos, P. F., Santana, C. S., Neris, J. B., Luzardo, F. H. M., & Velasco, F. G. (2018). Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water. Journal of Environmental Chemical Engineering, 6(2), 2319–2334. https://doi.org/10.1016/j.jece.2018.03.033 DOI: https://doi.org/10.1016/j.jece.2018.03.033
da Silva Cuba Carvalho, R., Bastos, R. G., & Souza, C. F. (2018). Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agricultural Water Management, 203, 311–321. https://doi.org/10.1016/ j.agwat.2018.03.028 DOI: https://doi.org/10.1016/j.agwat.2018.03.028
Delaide, B., Teerlinck, S., Decombel, A., & Bleyaert, P. (2019). Effect of wastewater from a pikeperch (Sander lucioperca L.) recirculated aquaculture system on hydroponic tomato production and quality. Agricultural Water Management, 226. https://doi.org/ 10.1016/j.agwat.2019.105814 DOI: https://doi.org/10.1016/j.agwat.2019.105814
Devvrat, & Ratan, R. (2019). Measurement and Controlling of pH and TDS in Automated Hydroponics System. Lecture Notes in Electrical Engineering, 553, 295–304. https://doi.org/10.1007/978-981-13-6772-4_26 DOI: https://doi.org/10.1007/978-981-13-6772-4_26
Dijkgraaf, K. H., Goddek, S., & Keesman, K. J. (2019). Modeling innovative aquaponics farming in Kenya. Aquaculture International, 27(5), 1395–1422. https://doi.org/10.1007/s10499-019-00397-z DOI: https://doi.org/10.1007/s10499-019-00397-z
Eck, M., Sare, A. R., Massart, S., Schmautz, Z., et al. (2019). Exploring bacterial communities in aquaponic systems. Water (Switzerland), 11(2), 260. https://doi.org/10.3390/w11020260 DOI: https://doi.org/10.3390/w11020260
Egbuikwem, P. N., Mierzwa, J. C., & Saroj, D. P. (2020). Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agricultural Water Management, 231. https://doi.org/10.1016/j.agwat.2020.106034 DOI: https://doi.org/10.1016/j.agwat.2020.106034
Eichhorn, T., & Meixner, O. (2020). Factors influencing thewillingness to pay for aquaponic products in a developed food market: A structural equation modeling approach. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083475 DOI: https://doi.org/10.3390/su12083475
El-Essawy, H., Nasr, P., & Sewilam, H. (2019). Aquaponics: a sustainable alternative to conventional agriculture in Egypt – a pilot scale investigation. Environmental Science and Pollution Research, 26(16), 15872–15883. https://doi.org/10.1007/s11356-019-04970-0 DOI: https://doi.org/10.1007/s11356-019-04970-0
Endo, M. (2018). Aquaponics in Plant Factory. In Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation (pp. 339–352). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00032-4 DOI: https://doi.org/10.1016/B978-0-12-813973-8.00032-4
Endut, A., Lananan, F., Jusoh, A., Norsani Wan Nik, W., & Ali, aini. (2016). Malaysian Journal of Applied Sciences Aquaponics Recirculation System: A Sustainable Food Source for the Future Water Conserves and Resources. Malaysian Journal of Applied Sciences, 1(1), 1–12.
Eregno, F. E., Moges, M. E., & Heistad, A. (2017). Treated greywater reuse for hydroponic lettuce production in a green wall system: Quantitative health risk assessment. Water (Switzerland), 9(7). https://doi.org/10.3390/w9070454 DOI: https://doi.org/10.3390/w9070454
Esa, M., Abu Bakar, M., Pg Abas, P. E., De Silva, L., & Metali, F. (2019). IoTs Hydroponics System: Effect of light condition towards plant growth. https://doi.org/10.4108/eai.24-10-2018.2280609 DOI: https://doi.org/10.4108/eai.24-10-2018.2280609
Espinosa-Moya, A., Alvarez-Gonzalez, A., Albertos-Alpuche, P., Guzman-Mendoza, R., & Martínez-Yáñez, R. (2018). Growth and development of herbaceous plants in aquaponic systems. Acta Universitaria, 28(2), 1–8. https://doi.org/10.15174/au.2018.1387 DOI: https://doi.org/10.15174/au.2018.1387
Estim, A., M. Shaleh, S. R., Shapawi, R., Saufie, S., & Mustafa, S. (2020). Maximizing Efficiency and Sustainability of Aquatic Food Production from Aquaponics Systems - A Critical Review of Challenges and Solution Options. Aquaculture Studies, 20(1). https://doi.org/10.4194/2618-6381-v20_1_08 DOI: https://doi.org/10.4194/2618-6381-v20_1_08
Estim, A., Saufie, S., & Mustafa, S. (2019). Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture. Journal of Water Process Engineering, 30. https://doi.org/10.1016/j.jwpe.2018.02.001 DOI: https://doi.org/10.1016/j.jwpe.2018.02.001
Fang, Y., Hu, Z., Zou, Y., Zhang, J., Zhu, Z., Zhang, J., & Nie, L. (2017). Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia. Bioresource Technology, 245, 358–364. https://doi.org/10.1016/j.biortech.2017.08.116 DOI: https://doi.org/10.1016/j.biortech.2017.08.116
Fussy, A., & Papenbrock, J. (2022). An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants, 11(9). https://doi.org/ 10.3390/plants11091153 DOI: https://doi.org/10.3390/plants11091153
Gaikwad, D. J. (2020). Hydroponics Cultivation of Crops. In Protected Cultivation and Smart Agriculture. New Delhi Publishers. https://doi.org/10.30954/NDP-PCSA.2020.31 DOI: https://doi.org/10.30954/NDP-PCSA.2020.31
Gavrilă, E. C., Patriche, N., Bogoescu, M., Sora, D., Doltu, M., & Crivineanu, M. (2019). Functional set up stages of aquaponic experimental model. Scientific Works. Series C. Veterinary Medicine, LXV (1), 109-114.
Gichana, Z., Liti, D., Wakibia, J., Ogello, E., et al. (2019). Efficiency of pumpkin (Cucurbita pepo), sweet wormwood (Artemisia annua) and amaranth (Amaranthus dubius) in removing nutrients from a smallscale recirculating aquaponic system. Aquaculture International, 27(6), 1767–1786. https://doi.org/ 10.1007/s10499-019-00442-x DOI: https://doi.org/10.1007/s10499-019-00442-x
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability (Switzerland), 7(4), 4199–4224. https://doi.org/10.3390/su7044199 DOI: https://doi.org/10.3390/su7044199
González-Linch, E., Medina-Moreira, J., Alarcón-Salvatierra, A., Medina-Anchundia, S., & Lagos-Ortiz, K. (2019). Automated Hydroponic Modular System. Advances in Intelligent Systems and Computing, 901, 59–67. https://doi.org/10.1007/978-3-030-10728-4_7 DOI: https://doi.org/10.1007/978-3-030-10728-4_7
Greenfeld, A., Becker, N., Bornman, J. F., dos Santos, M. J., & Angel, D. (2020). Consumer preferences for aquaponics: A comparative analysis of Australia and Israel. Journal of Environmental Management, 257. https://doi.org/10.1016/ j.jenvman.2019.109979 DOI: https://doi.org/10.1016/j.jenvman.2019.109979
Grigas, A., Kemzūraitė, A., & Steponavičius, D. (2020). Hydroponic devices for green fodder production: a review. Rural development, 2019(1), 21–27. https://doi.org/10.15544/rd.2019.003 DOI: https://doi.org/10.15544/RD.2019.003
Gunawan, W., Firdaus, S., & Bambang A. G. (2021). Cultivation of vegetables and fish using the aquaponics sistem ( dft model ) in CV TMR. Jurnal ABDIKARYA, 3(1), 95–102. DOI: https://doi.org/10.47080/abdikarya.v3i1.1261
Homoki, D., Minya, D., Kovács, L., Molnár, Á., et al. (2020). Comparison of the technological background of aquaponic systems. Acta Agraria Debreceniensis, 1, 47–52. https://doi.org/10.34101/actaagrar/1/4511 DOI: https://doi.org/10.34101/actaagrar/1/4511
Irhayyim, T., Fehér, M., Lelesz, J., Bercsényi, M., & Bársony, P. (2020). Nutrient removal efficiency and growth of watercress (Nasturtium officinale) under different harvesting regimes in integrated recirculating aquaponic systems for rearing common carp (Cyprinus carpio L.). Water (Switzerland), 12(5). https://doi.org/10.3390/w12051419 DOI: https://doi.org/10.3390/w12051419
Janni, Y. D., & Jadhav, D. B. (2022). Aquaponics : Uses , Cultivation and Beneficial Effects. 2(9).
Jayachandran, A., Jain, S., Saini, S., & Maurya, P. (2022). Hydroponics : An art of soil less farming. The Pharma Innovation Journal, SP-11(9): 1049-1053.
Johnson, G. E., Buzby, K. M., Semmens, K. J., & Waterland, N. L. (2016). Year-Round Lettuce (Lactuca sativa L.) Production in a Flow-Through Aquaponic System. Journal of Agricultural Science, 9(1), 75. https://doi.org/10.5539/jas.v9n1p75 DOI: https://doi.org/10.5539/jas.v9n1p75
Jordan, R. A., Ribeiro, E. F., de Oliveira, F. C., Geisenhoff, L. O., & Martins, E. A. S. (2018). Yield of lettuce grown in hydroponic and aquaponic systems using different substrates. Revista Brasileira de Engenharia Agricola e Ambiental, 22(8), 525–529. https://doi.org/10.1590/1807-1929/agriambi.v22n8p525-529 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n8p525-529
Kaburagi, E., Yamada, M., Baba, T., Fujiyama, H., Murillo-Amador, B., & Yamada, S. (2020). Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of Swiss chard (Beta vulgaris L. spp. cicla). Agricultural Water Management, 227. https://doi.org/10.1016/ j.agwat.2019.105851 DOI: https://doi.org/10.1016/j.agwat.2019.105851
Kiridi, E. A., & Ogunlela, A. O. (2020). Phytoremediation rates of morning glory (Ipomea asarifolia) in an aquaculture effluent hydroponic system. IOP Conference Series: Earth and Environmental Science, 445(1). https://doi.org/10.1088/1755-1315/445/1/012020 DOI: https://doi.org/10.1088/1755-1315/445/1/012020
Kizak, V., & Kapaligoz, S. (2019). Water quality changes and goldfish growth (carassius auratus) in microgreen aquaponic and recirculating systems. Fresenius Environmental Bulletin, 28(9), 6460–6466. https://www.researchgate.net/publication/339298953
Kloas, W., Groß, R., Baganz, D., Graupner, J., et al. (2015). A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions, 7(2), 179–192. https://doi.org/10.3354/ aei00146 DOI: https://doi.org/10.3354/aei00146
Krastanova, M., Sirakov, I., Ivanova-Kirilova, S., Yarkov, D., & Orozova, P. (2022). Aquaponic systems: biological and technological parameters. Biotechnology and Biotechnological Equipment, 36(1), 305–316. https://doi.org/10.1080/ 13102818.2022.2074892 DOI: https://doi.org/10.1080/13102818.2022.2074892
Kumar Sharma Research Scholar, P., Stephan Sampath Kumar Director, J., Pawan Kumar Sharma, P.K., Kumar, J.S.S, & Anand, S. (2018). Aquaponics: A boon for income generation in water deficient areas of India like Rajasthan. International Journal of Fisheries and Aquatic Studies, 6(6), 170–173.
Kumar, A., Shukla, S., Dixit, P., Thupstan, T., & Kumar, K. (2020). Vertical Farming Promising Cultivation for Horticultural Crops. International Journal of Current Microbiology and Applied Sciences, 9(6), 2491–2494. https://doi.org/10.20546/ ijcmas.2020.906.302 DOI: https://doi.org/10.20546/ijcmas.2020.906.302
Kumar, P., & Saini, S. (2020). Nutrients for Hydroponic Systems in Fruit Crops. In S. S. Solankey, S. Akhtar, A. I. L. Maldonado, H. Rodriguez-Fuentes, J. A. V. Contreras, & J. M. M. Reyes (Eds.), Urban Horticulture - Necessity of the Future. IntechOpen. https://doi.org/10.5772/intechopen.90991 DOI: https://doi.org/10.5772/intechopen.90991
Lastiri, D. R., Slinkert, T., Cappon, H. J., Baganz, D., Staaks, G., & Keesman, K. J. (2016). Model of an aquaponic system for minimised water, energy and nitrogen requirements. Water Science and Technology, 74(1), 30–37. https://doi.org/10.2166/wst.2016.127 DOI: https://doi.org/10.2166/wst.2016.127
Li, C., Zhang, B., Luo, P., Shi, H., et al. (2019). Performance of a pilot-scale aquaponics system using hydroponics and immobilized biofilm treatment for water quality control. Journal of Cleaner Production, 208, 274–284. https://doi.org/10.1016/ j.jclepro.2018.10.170 DOI: https://doi.org/10.1016/j.jclepro.2018.10.170
Li, G., Tao, L., Li, X. Li, Peng, L., et al. (2018). Design and performance of a novel rice hydroponic biofilter in a pond-scale aquaponic recirculating system. Ecological Engineering, 125, 1–10. https://doi.org/10.1016/j.ecoleng.2018.10.001 DOI: https://doi.org/10.1016/j.ecoleng.2018.10.001
Li, S., Zhao, X., Ye, X., Zhang, L., Shi, L., Xu, F., & Ding, G. (2020). The effects of condensed molasses soluble on the growth and development of rapeseed through seed germination, hydroponics and field trials. Agriculture (Switzerland), 10(7), 1–20. https://doi.org/10.3390/agriculture10070260 DOI: https://doi.org/10.3390/agriculture10070260
Lima, J. de F., Duarte, S. S., Bastos, A. M., & Carvalho, T. (2019). Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of amazon river shrimp (Macrobrachium amazonicum). Environmental Science and Pollution Research, 26(13), 13476–13488. https://doi.org/10.1007/s11356-019-04496-5 DOI: https://doi.org/10.1007/s11356-019-04496-5
Maboko, M. M., & Du Plooy, C. P. (2017). Response of hydroponically grown cherry and fresh market tomatoes to reduced nutrient concentration and foliar fertilizer application under shadenet conditions. HortScience, 52(4), 572–578. https://doi.org/10.21273/HORTSCI11516-16 DOI: https://doi.org/10.21273/HORTSCI11516-16
Maboko, M. M., Du Plooy, C. P., & Chiloane, S. (2017). Yield and mineral content of hydroponically grown mini-cucumber (Cucumis sativus L.) as affected by reduced nutrient concentration and foliar fertilizer application. HortScience, 52(12), 1728–1733. https://doi.org/10.21273/HORTSCI12496-17 DOI: https://doi.org/10.21273/HORTSCI12496-17
Magwaza, S. T., Magwaza, L. S., Odindo, A. O., & Mditshwa, A. (2020). Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. In Science of the Total Environment (Vol. 698). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.134154 DOI: https://doi.org/10.1016/j.scitotenv.2019.134154
Mahlangu, R. I. S., Maboko, M. M., Sivakumar, D., Soundy, P., & Jifon, J. (2016). Lettuce (Lactuca sativa L.) growth, yield and quality response to nitrogen fertilization in a non-circulating hydroponic system. Journal of Plant Nutrition, 39(12), 1766–1775. https://doi.org/10.1080/01904167.2016.1187739 DOI: https://doi.org/10.1080/01904167.2016.1187739
Manda, R. R., Avinash Addanki, V., & Srivastava, S. (2021). Role of drip irrigation in plant health management, its importance and maintenance. Plant archives, 21(Suppliment-1), 1294–1302. https://doi.org/10.51470/plantarchives.2021.v21.S1.204 DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.204
Manos, D.P., & Xydis, G. (2019). Hydroponics: are we moving towards that direction only because of the environment? A discussion on forecasting and a systems review. Environmental Science and Pollution Research, 26(13), 12662–12672. https://doi.org/10.1007/s11356-019-04933-5 DOI: https://doi.org/10.1007/s11356-019-04933-5
Maucieri, C., Nicoletto, C., Schmautz, Z., Sambo, P., Komives, T., Borin, M., & Junge, R. (2017). Vegetable intercropping in a small-scale aquaponic system. Agronomy, 7(4). https://doi.org/10.3390/ agronomy7040063 DOI: https://doi.org/10.3390/agronomy7040063
Maucieri, C., Nicoletto, C., Zanin, G., Xiccato, G., Borin, M., & Sambo, P. (2020). Design and Development of a Portable and Streamlined Nutrient Film Technique (NFT) Aquaponic System. Aquacultural Engineering, 102100. https://doi.org/10.1016/ j.aquaeng.2020.102100 DOI: https://doi.org/10.1016/j.aquaeng.2020.102100
Medina, M., Jayachandran, K., Bhat, M., Specca, D. (2016). Recirculating Aquaculture Systems (RAS) and Aquaponics for Urban Food Production, with a Pictorial Guide to Aquaponics. In: S. Brown, K. McIvor, E. Hodges Snyder (Eds) Sowing Seeds in the City (pp 293–308). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7453-6_21 DOI: https://doi.org/10.1007/978-94-017-7453-6_21
Modu, F., Adam, A., Aliyu, F., Mabu, A., & Musa, M. (2020). A survey of smart hydroponic systems. Advances in Science, Technology and Engineering Systems, 5(1), 233–248. https://doi.org/10.25046/aj050130 DOI: https://doi.org/10.25046/aj050130
Monsees, H., Keitel, J., Paul, M., Kloas, W., & Wuertz, S. (2017). Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquaculture Environment Interactions, 9(1), 9–18. https://doi.org/10.3354/aei00205 DOI: https://doi.org/10.3354/aei00205
Moraes, V. H., Giongo, P. R., Silva, F. de F., Mesquita, M., de Abreu, J. P., & Pereira, A. D. (2020). Behavior of three lettuce cultivars in a hydroponic system. Revista Facultad Nacional de Agronomia Medellin, 73(2), 9165–9170. https://doi.org/10.15446/ rfnam.v73n2.75423 DOI: https://doi.org/10.15446/rfnam.v73n2.75423
Naomi, M., Hasan, Z., Sumadi, Hamdani, H., Andriani, Y., & Subhan, U. (2020). Growth of Striped Catfish Fingerlings (Pangasianodon hypophthalmus) in Aquaponic System with Fine Bubbles (FBs) Application. Asian Journal of Fisheries and Aquatic Research, 7 (2) 1–9. https://doi.org/10.9734/ajfar/2020/ v7i230111 DOI: https://doi.org/10.9734/ajfar/2020/v7i230111
Nigam, S., & Balcom, P. (2016). Project OASIS: Optimizing Aquaponic Systems to Improve Sustainability. https://scholars.unh.edu/honors/272
Nosir, W., Abdelkader, M., & Abdelkader, M. A. (2017). Effect of natural Additives on Nigella sativa Growth in Hydroponic System Walid Nosir and Mohamed A Abdelkader Effect of natural Additives on Nigella sativa Growth in Hydroponic System. The Future Journal of Biology, 2(4), 11–30. http://www.thefuture.com
Nozzi, V., Graber, A., Schmautz, Z., Mathis, A., & Junge, R. (2018). Nutrient management in aquaponics: Comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agronomy, 8(3). https://doi.org/10.3390/agronomy8030027 DOI: https://doi.org/10.3390/agronomy8030027
Nuwansi, K. K. T., Verma, A. K., Rathore, G., Prakash, C., Chandrakant, M. H., & Prabhath, G. P. W. A. (2019). Utilization of phytoremediated aquaculture wastewater for production of koi carp (Cyprinus carpio var. koi)and gotukola (Centella asiatica)in an aquaponics. Aquaculture, 507, 361–369. https://doi.org/ 10.1016/j.aquaculture.2019.04.053 DOI: https://doi.org/10.1016/j.aquaculture.2019.04.053
Ogah, S. I., Kamarudin, M. S., Nurul Amin, S. M., & Puteri Edaroyati, M. W. (2020). Biological filtration properties of selected herbs in an aquaponic system. Aquaculture Research, 51(5), 1771–1779. https://doi.org/10.1111/are.14526 DOI: https://doi.org/10.1111/are.14526
Oladimeji, A. S., Olufeagba, S. O., Ayuba, V. O., Sololmon, S. G., & Okomoda, V. T. (2020b). Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. Journal of King Saud University - Science, 32(1), 60–66. https://doi.org/10.1016/j.jksus.2018.02.001 DOI: https://doi.org/10.1016/j.jksus.2018.02.001
Oladimeji, S. A., Okomoda, V. T., Olufeagba, S. O., Solomon, S. G., et al. (2020a). Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Science and Nutrition, 8(5), 2307–2315. https://doi.org/10.1002/fsn3.1512 DOI: https://doi.org/10.1002/fsn3.1512
Oniga, C., Jurcoane, Ștefana, Mocuta, D., & Turek Rahoveanu, A. (2018). Studies about the fish farming development in aquaponic systems: A review. Scientific Bulletin. Series F. Biotechnologies, XXII, 237–246.
Osei, M. K., Annor, B., Adjebeng- Danquah, J., Danquah, A., Danquah, E., Blay, E., & Hans Adu-Dapaah, H. (2018). Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development. In S. T. Nyaku, & A. Danquah (Eds.), Recent Advances in Tomato Breeding and Production. IntechOpen. https://doi.org/10.5772/intechopen.76011 DOI: https://doi.org/10.5772/intechopen.76011
Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Haїssam Jijakli, M., & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26 (3), 813–842. https://doi.org/10.1007/s10499-018-0249-z DOI: https://doi.org/10.1007/s10499-018-0249-z
Pattillo, D. (2017a). An Overview of Aquaponic Systems: Aquaculture Components. Retrived from http://lib.dr.iastate.edu/ ncrac_techbulletins/20
Pattillo, D. (2017b). An Overview of Aquaponic Systems: Hydroponic Components Part of the Agriculture Commons, and the Aquaculture and Fisheries Commons Recommended Citation Technical Bulletin Series An Overview of Aquaponic Systems: Hydroponic Components. NCRAC Technical Bulletins North Central Regional Aquaculture Center. http://lib.dr.iastate.edu/ ncrac_techbulletins/19
Pérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R., & Fernández-Cabanás, V. M. (2019). Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85, 129–137. https://doi.org/10.1016/ j.aquaeng.2019.04.001 DOI: https://doi.org/10.1016/j.aquaeng.2019.04.001
Piñero, M. C., Otálora, G., Collado-González, J., López-Marín, J., & Del Amor, F. M. (2020). Differential Effects of Aquaponic Production System on Melon (Cucumis melo L.) Fruit Quality. Journal of Agricultural and Food Chemistry, 68(24), 6511–6519. https://doi.org/10.1021/acs.jafc.0c01124 DOI: https://doi.org/10.1021/acs.jafc.0c01124
Priadi, D., Wibowo, H., & Mulyaningsih, E. S. (2019). The Growth Optimization of Pak Choy (Brassica rapa L. var. chinensis) in Household-Scale Aquaponics System. Jurnal Biodjati, 4(2), 175–183. https://doi.org/10.15575/ biodjati.v4i2.4630 DOI: https://doi.org/10.15575/biodjati.v4i2.4630
Puteri Edaroyati, M. W., Siti Aishah, H., & Al-Tawaha, A. M. (2017). Requirements for inserting intercropping in aquaponics system for sustainability in agricultural production system. Agronomy Research, 15 (5), 2048–2067. https://doi.org/10.15159/ AR.17.070
Qadeer, A. (2020). Development and testing of re-circulating nutrient film technique. Pure and Applied Biology, 9(1). 1209-1215. https://doi.org/10.19045/bspab.2020.90127 DOI: https://doi.org/10.19045/bspab.2020.90127
Quí, T. P., Ardi, A., Chaniago, I., & Quí, T. P. (2020). Compare the growth and productivity of I. aquatic species on hydroponic subsystems within an aquaponic system. IOP Conference Series: Earth and Environmental Science, 497(1). https://doi.org/10.1088/ 1755-1315/497/1/012004 DOI: https://doi.org/10.1088/1755-1315/497/1/012004
Rakocy, J. E. (2012). Aquaponics-Integrating Fish and Plant Culture. Aquaculture Production Systems, 344–386. https://doi.org/10.1002/9781118250105.ch14 DOI: https://doi.org/10.1002/9781118250105.ch14
Reena Kumari, Kumar, R. (2019). Aeroponics: A Review on Modern Agriculture Technology. Indian Farmer, 6(4), 286–292.
Ren, Q., Zhang, L., Wei, Y., Li, D., Wei, Y., & Li, D. (2018). A method for predicting dissolved oxygen in aquaculture water in an aquaponics system. Computers and Electronics in Agriculture, 151, 384–391. https://doi.org/10.1016/j.compag.2018.06.013 DOI: https://doi.org/10.1016/j.compag.2018.06.013
Rizal, A., Dhahiyat, Y., Zahidah, Andriani, Y., Handaka, A. A., & Sahidin, A. (2018). The economic and social benefits of an aquaponic system for the integrated production of fish and water plants. IOP Conference Series: Earth and Environmental Science, 137(1). https://doi.org/10.1088/1755-1315/137/1/012098 DOI: https://doi.org/10.1088/1755-1315/137/1/012098
Sahubawa, L., Triyatmo, B., & Ambarwati, E. (2020). Bioconversion and Bioeconomic of Wastewater from Red Tilapia Aquaculture on the Aquaponics System as Source of Nutrient in Green Mustard Growth. E3S Web of Conferences, 147. https://doi.org/10.1051/e3sconf/202014701013 DOI: https://doi.org/10.1051/e3sconf/202014701013
Sakamoto, M., Wada, M., & Suzuki, T. (2020). Effect of partial excision of early taproots on growth and components of hydroponic carrots. Horticulturae, 6(1). https://doi.org/10.3390/ horticulturae6010005 DOI: https://doi.org/10.3390/horticulturae6010005
Salas, F. M., Mejia, H. M. N., & Salas, R. A. (2020). Productivity, pigment composition and chemical characteristics of kale (Brassica oleracea l.) cultivated with different ages of organic nutrient solutions under aggregate hydroponic system. Environment Asia, 13(Special Issue 1), 72–80. https://doi.org/ 10.14456/ea.2020.24
Sanjay, V. S., & Balasaheb, K. M. (2021). Artificial Climate Control Based Hydroponics Farming. 5(4), 1360–1365.
Saxena, N. N. (2021). The Review on Techniques of Vertical Farming. International Journal of Modern Agriculture, 10(1), 732–738.
Sayara, T., Amarneh, B., Saleh, T., Aslan, K., Abuhanish, R., & Jawabreh, A. (2016). Hydroponic and Aquaponic Systems for Sustainable Agriculture and Environment. International Journal of Plant Science and Ecology, 2(3), 23–29. http://www.aiscience.org/ journal/ijpsehttp://creativecommons.org/licenses/by/4.0/
Schmautz, Z., Espinal, C. A., Smits, T. H. M., Frossard, E., & Junge, R. (2021). Nitrogen transformations across compartments of an aquaponic system. Aquacultural Engineering, 92(December 2020), 102145. https://doi.org/10.1016/j.aquaeng.2021.102145 DOI: https://doi.org/10.1016/j.aquaeng.2021.102145
Schmautz, Z., Loeu, F., Liebisch, F., Graber, A., Mathis, A., Bulc, T. G., & Junge, R. (2016). Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water (Switzerland), 8(11). https://doi.org/10.3390/w8110533 DOI: https://doi.org/10.3390/w8110533
Schwartz, P. A., Anderson, T. S., & Timmons, M. B. (2019). Predictive equations for butterhead lettuce (Lactuca sativa, cv. flandria) root surface area grown in aquaponic conditions. Horticulturae, 5(2). https://doi.org/10.3390/horticulturae5020039 DOI: https://doi.org/10.3390/horticulturae5020039
Series, I. O. P. C., & Science, M. (2021). Analysis of Deep Water Culture ( DWC ) hydroponic nutrient solution level control systems Analysis of Deep Water Culture ( DWC ) hydroponic nutrient solution level control systems. https://doi.org/10.1088/1757-899X/1108/1/012032 DOI: https://doi.org/10.1088/1757-899X/1108/1/012032
Shete, A. P., Verma, A. K., Chadha, N. K., Prakash, C., Chandrakant, M. H., & Nuwansi, K. K. T. (2017). Evaluation of different hydroponic media for mint (Mentha arvensis) with common carp (Cyprinus carpio) juveniles in an aquaponic system. Aquaculture International, 25(3), 1291–1301. https://doi.org/10.1007/s10499-017-0114-5 DOI: https://doi.org/10.1007/s10499-017-0114-5
Shete, A. P., Verma, A. K., Chadha, N. K., Prakash, C., Peter, R. M., Ahmad, I., & Nuwansi, K. K. T. (2016). Optimization of hydraulic loading rate in aquaponic system with Common carp (Cyprinus carpio) and Mint (Mentha arvensis). Aquacultural Engineering, 72–73, 53–57. https://doi.org/10.1016/ j.aquaeng.2016.04.004 DOI: https://doi.org/10.1016/j.aquaeng.2016.04.004
Shetty, M. H., Pai, K.K., Mallya, N., & Pratheeksha. (2021). Fully Automated Hydroponics System for Smart Farming. International Journal of Engineering and Manufacturing, 11(4), 33–41. https://doi.org/10.5815/ijem.2021.04.04 DOI: https://doi.org/10.5815/ijem.2021.04.04
Shreejana, K.C., Thapa, R., Lamsal, A., Ghimire, S., Kurunju, K., & Shrestha, P. (2022). Aquaponics a modern approach for integrated farming and wise utilization of components for sustainability of food security: A review. Archives of Agriculture and Environmental Science, 7(1), 121–126. https://doi.org/ 10.26832/24566632.2022.0701017 DOI: https://doi.org/10.26832/24566632.2022.0701017
Shubham, S. N., & Shrimanth V. L. (2020). A Survey on Hydroponics based Smart Agriculture. Adalya Journal, 9(1).
Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/j.agwat.2016.10.013 DOI: https://doi.org/10.1016/j.agwat.2016.10.013
Suhl, J., Oppedijk, B., Baganz, D., Kloas, W., Schmidt, U., & van Duijn, B. (2019). Oxygen consumption in recirculating nutrient film technique in aquaponics. Scientia Horticulturae, 255, 281–291. https://doi.org/10.1016/j.scienta.2019.05.033 DOI: https://doi.org/10.1016/j.scienta.2019.05.033
Sun, S., Gao, L., He, S., Huang, J., & Zhou, W. (2019). Nitrogen removal in response to plants harvesting in two kinds of enhanced hydroponic root mats treating secondary effluent. Science of the Total Environment, 670, 200–209. https://doi.org/10.1016/ j.scitotenv.2019.03.182 DOI: https://doi.org/10.1016/j.scitotenv.2019.03.182
Sundar, P., Jyothi, K., & Sundar, C. (2021). Indoor Hydroponics: A Potential Solution to Reuse Domestic Rinse Water. Biosciences Biotechnology Research Asia, 18(2), 373–383. https://doi.org/ 10.13005/bbra/2924 DOI: https://doi.org/10.13005/bbra/2924
Supajaruwong, S., Satanwat, P., Pungrasmi, W., & Powtongsook, S. (2020). Design and function of a nitrogen and sediment removal system in a recirculating aquaculture system optimized for aquaponics. Environmental Engineering Research, 26(2), 190494–0. https://doi.org/10.4491/eer.2019.494 DOI: https://doi.org/10.4491/eer.2019.494
Supriadi, O., Sunardi, A., Baskara, H. A., & Safei, A. (2019). Controlling pH and temperature aquaponics use proportional control with Arduino and Raspberry. IOP Conference Series: Materials Science and Engineering, 550(1). https://doi.org/10.1088/1757-899X/550/1/012016 DOI: https://doi.org/10.1088/1757-899X/550/1/012016
Tangune, B. F., Pereira, G. M., De Sousa, R. J., & Gatto, R. F. (2016). Response of broccoli to soil water tension under drip irrigation. Semina:Ciencias Agrarias, 37(1), 7–16. https://doi.org/10.5433/1679-0359.2016v37n1p7 DOI: https://doi.org/10.5433/1679-0359.2016v37n1p7
Trejo-Téllez, L. I. , & Gómez-Merino, F. C. (2012). Nutrient Solutions for Hydroponic Systems. In Toshiki Asao (Ed.), Hydroponics - A Standard Methodology for Plant Biological Researches. IntechOpen. https://doi.org/10.5772/37578 DOI: https://doi.org/10.5772/37578
Triyono, S., Putra, R. M., Waluyo, S., & Amin, M. (2019). The effect of three different containers of nutrient solution on the growth of vegetables cultured in DFT hydroponics. IOP Conference Series: Earth and Environmental Science, 355(1). https://doi.org/10.1088/1755-1315/355/1/012092 DOI: https://doi.org/10.1088/1755-1315/355/1/012092
Tyson, R. V., Treadwell, D. D., & Simonne, E. H. (2011). Opportunities and Challenges to Sustainability in Aquaponic Systems. HortTechnology, 21(1), 6–13. https://doi.org/10.21273/ horttech.21.1.6 DOI: https://doi.org/10.21273/HORTTECH.21.1.6
Velichkova, K., Sirakov, I., Stoyanova, S., & Staykov, Y. (2019). Cultivation of lettuce (Lactuca sativa L.) and rainbow trout (Oncorhynchus mykiss w.) in the aquaponic recirculation system. Journal of Central European Agriculture, 20(3), 967–973. https://doi.org/10.5513/JCEA01/20.3.2223 DOI: https://doi.org/10.5513/JCEA01/20.3.2223
Walters, K. J., Behe, B. K., Currey, C. J., & Lopez, R. G. (2020). Historical, Current, and Future Perspectives for Controlled Environment Hydroponic Food Crop Production in the United States. HortScience, 55(6), 758–767. https://doi.org/10.21273/ hortsci14901-20 DOI: https://doi.org/10.21273/HORTSCI14901-20
Wang, C. Y., Chang, C. Y., Chien, Y. H., & Lai, H. T. (2016). The performance of coupling membrane filtration in recirculating aquaponic system for tilapia culture. International Biodeterioration and Biodegradation, 107, 21–30. https://doi.org/ 10.1016/j.ibiod.2015.10.016 DOI: https://doi.org/10.1016/j.ibiod.2015.10.016
Wei, Y., Li, W., An, D., Li, D., Jiao, Y., & Wei, Q. (2019). Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access, 7, 169306–169326). https://doi.org/10.1109/ ACCESS.2019.2953491 DOI: https://doi.org/10.1109/ACCESS.2019.2953491
Widiyanti, A., Arifin, H. S., & Arifjaya, N. M. (2020). The Use of Greywater for Hydroponics Plant in Griya Katulampa Bogor City. IOP Conference Series: Earth and Environmental Science, 477, 012006. https://doi.org/10.1088/1755-1315/477/1/012006 DOI: https://doi.org/10.1088/1755-1315/477/1/012006
Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. https://doi.org/10.1016/ j.aquaeng.2017.01.004 DOI: https://doi.org/10.1016/j.aquaeng.2017.01.004
Wongkiew, S., Hu, Z., Nhan, H. T., & Khanal, S. K. (2020). Aquaponics for resource recovery and organic food productions. Current Developments in Biotechnology and Bioengineering (pp. 475–494). https://doi.org/10.1016/B978-0-444-64309-4.00020-9 DOI: https://doi.org/10.1016/B978-0-444-64309-4.00020-9
Wongkiew, S., Park, M. R., Chandran, K., & Khanal, S. K. (2018a). Aquaponic Systems for Sustainable Resource Recovery: Linking Nitrogen Transformations to Microbial Communities. Environmental Science and Technology, 52(21), 12728–12739. https://doi.org/10.1021/acs.est.8b04177 DOI: https://doi.org/10.1021/acs.est.8b04177
Wongkiew, S., Popp, B. N., & Khanal, S. K. (2018b). Nitrogen recovery and nitrous oxide (N2O) emissions from aquaponic systems: Influence of plant species and dissolved oxygen. International Biodeterioration and Biodegradation, 134, 117–126. https://doi.org/10.1016/j.ibiod.2018.08.008 DOI: https://doi.org/10.1016/j.ibiod.2018.08.008
Worku, A., Tefera, N., Kloos, H., & Benor, S. (2018). Bioremediation of brewery wastewater using hydroponics planted with vetiver grass in Addis Ababa, Ethiopia. Bioresources and Bioprocessing, 5(1). https://doi.org/10.1186/s40643-018-0225-5 DOI: https://doi.org/10.1186/s40643-018-0225-5
Wu, F., Ghamkhar, R., Ashton, W., & Hicks, A. L. (2019). Sustainable Seafood and Vegetable Production: Aquaponics as a Potential Opportunity in Urban Areas. In Integrated Environmental Assessment and Management, 15 (6), 832–843. https://doi.org/10.1002/ieam.4187 DOI: https://doi.org/10.1002/ieam.4187
Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571 https://doi.org/10.1016/j.jclepro.2020.121571 DOI: https://doi.org/10.1016/j.jclepro.2020.121571
Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of aquaponic systems. Scientia Horticulturae, 256. https://doi.org/10.1016/j.scienta.2019.108619 DOI: https://doi.org/10.1016/j.scienta.2019.108619
Yang, T., & Kim, H. J. (2020b). Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae, 6(1). https://doi.org/10.3390/horticulturae6010009 DOI: https://doi.org/10.3390/horticulturae6010009
Yang, T., & Kim, H. J. (2020c). Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water (Switzerland), 12(5). https://doi.org/10.3390/W12051259 DOI: https://doi.org/10.3390/w12051259
Yang, T., & Kim, H.-J. (2020a). Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Journal of Cleaner Production, 274, 122619. https://doi.org/10.1016/ j.jclepro.2020.122619 DOI: https://doi.org/10.1016/j.jclepro.2020.122619
Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges – A review. Journal of Cleaner Production, 228, 1586–1599. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.04.290 DOI: https://doi.org/10.1016/j.jclepro.2019.04.290
Youssef, M., & Abou kamer, M. (2019). Effectiveness of different nutrition sources and magnetic fields on lettuce grown under hydroponic system. Scientific Journal of Agricultural Sciences, 1(2), 62–71. https://doi.org/10.21608/sjas.2019.19564.1015 DOI: https://doi.org/10.21608/sjas.2019.19564.1015
Zainal, A. G., Yulianto, H., Rudy, & Yanfika, H. (2021). Financial benefits of the environmentally friendly aquaponic media system. IOP Conference Series: Earth and Environmental Science, 739(1). https://doi.org/10.1088/1755-1315/739/1/012024 DOI: https://doi.org/10.1088/1755-1315/739/1/012024
Zhang, B., Luo, P., Pang, H., Gao, Y., Zhang, Z., & Li, C. (2018). Nitrogen pollutants removal characteristics in aquaponic system. Chinese Journal of Environmental Engineering, 12(5), 1501–1509. https://doi.org/10.12030/j.cjee.201710116
Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C., & Fang, Y. (2016). Effects of pH on nitrogen transformations in media-based aquaponics. Bioresource Technology, 210, 81–87. https://doi.org/10.1016/j.biortech.2015.12.079 DOI: https://doi.org/10.1016/j.biortech.2015.12.079
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.