Removal of Lead from Aqueous Solution by Fusarium oxysporum: Equilibrium and Phytotoxicity Studies
DOI:
https://doi.org/10.18006/2022.10(6).1344.1353Keywords:
Adsorbent, Lead, Fusarium oxysporum, PhytotoxicityAbstract
Lead is a toxic metal of public health concern. The applicability of Fusarium oxysporum biomass as a biosorbent for the removal of lead ions from wastewater is assessed in the present investigation. Batch experiments were conducted under different experimental conditions for analysis of the lead biosorption capacity of live and dead biomass of Fusarium oxysporum. Lead ions were significantly absorbed at pH 5 with a 2g adsorbent amount at 300C. Equilibrium results were analyzed by Langmuir and Freundlich isotherms and found that Langmuir isotherm is the best fit under this condition. A phytotoxicity study revealed that the growth parameters of wheat seeds were significantly increased in the lead solution treated with dead biomass as compared to the live biomass of F. oxysporum. Further, dead F. oxysporum significantly removed lead within 3 hours whereas live fungal biomass took two days for the complete removal of lead. Therefore, the results of the study suggested that live and dead biomass of F. oxysporum can be used as an effective, safe, and economically feasible sorbent for the removal of lead present in industrial effluent or wastewater systems.
References
Abdus-Salam, N., &Adekola, S.K. (2018). Adsorption studies of zinc (II) on magnetite, baobab (Adansonia digitata) and magnetite-baobab composite. Applied Water Science, 8, 222. https://doi.org/10.1007/s13201-018-0867-7 DOI: https://doi.org/10.1007/s13201-018-0867-7
Adebowale, K., Egbedina, A., & Shonde, B. (2020). Adsorption of lead ions on magnetically separable Fe3O4 watermelon composite. Applied Water Science. 10, 225. https://doi.org/10.1007/s13201-020-01307-y DOI: https://doi.org/10.1007/s13201-020-01307-y
Alghamdi, A.A., Al-Odayni, A.B., Saeed, W.S., Al-Kahtani, A., et al. (2019). Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials, 12(12), 2020. https://doi.org/10.3390/ma12122020
Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term heavy metals proposal of a comprehensive definition. Toxicological and Environmental Chemistry, 100(1-2), 6-19.https://doi.org/10.1080/ 02772248.2017.1413652 DOI: https://doi.org/10.1080/02772248.2017.1413652
Ali, I.H., Al Mesfer, M.K., Khan, M.I., Danish, M., et al. (2019). Exploring adsorption process of lead (II) and chromium (VI) ions from aqueous solutions on acid activated carbon prepared from Juniperus procera leaves. Processes, 7(4), 217. https://doi.org/10.3390/pr7040217 DOI: https://doi.org/10.3390/pr7040217
Bharathi, K.S., & Ramesh, S. P. T. (2013). Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Applied Water Science, 3, 673-687. https://doi.org/10.1007/s13201-013-0103-4. DOI: https://doi.org/10.1007/s13201-013-0103-4
Bouabidi, Z.B., El-Naas, M.H., Cortes, D., McKay, G., et al. (2018). Steel-Making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution. Chemical Engineering Journal, 334, 837-844. http://dx.doi.org/10.1016/j.cej.2017.10.073 DOI: https://doi.org/10.1016/j.cej.2017.10.073
Chauhan, J., Yadav, V.K., Sahu, A.P., Jha, R.K., et al. (2020b). Biosorption potential of alkali pretreated fungal biomass for the removal and detoxification of lead metal ions. Journal of Scientific and Industrial Research, 79 (07), 636-639. DOI: https://doi.org/10.56042/jsir.v79i7.40482
Chauhan, J., Yadav, V.K., Saini, I., Jha, R.K., et al. (2020a). Effect of fungal pretreatment on Solanum nigrum L. leaves biomass aimed at the bioadsorption of heavy metals. Indian Journal of Traditional Knowledge, 19(4), 832-838. DOI: https://doi.org/10.56042/ijtk.v19i4.26188
Cheng, Y., Yang, C., He, H., Zeng, G., et al. (2015). Biosorption of Pb (II) ions from aqueous solutions by waste biosorbent from biotrickling filters: kinetics, isotherms, and thermodynamics. Journal of Environmental Engineering, 142(9), C4015001. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000956
Ekmekci, Y., Tanyolac, D., & Ayhan, B. (2009). A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiologiae Plantarum, 31, 319-330. https://doi.org/10.1007/s11738-008-0238-3 DOI: https://doi.org/10.1007/s11738-008-0238-3
Garcia, R., Campos, J., Cruz, J.A., Calderón, M.E., et al. (2016). Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp. strains isolated from industrial waste activate sludge. TIP Revista Especializadaen Ciencias Químico-Biológicas,19(1), 5-14. https://doi.org/10.1016/j.recqb.2016.02.001 DOI: https://doi.org/10.1016/j.recqb.2016.02.001
Hlihor, R.M., Figueiredo, H., Tavares, T., Gavrilescu, M., et al. (2017). Biosorption potential of dead and living Arthrobacter viscosusbiosorbent in the removal of Cr (VI): batch and column studies. Process Safety and Environmental Protection, 108, 44-56. https://doi.org/10.1016/j.psep.2016.06.016 DOI: https://doi.org/10.1016/j.psep.2016.06.016
Hong, Y. J., Liao, W., Yan, Z.F., Bai, Y. C., et al. (2020). Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. Hindawi Journal of Chemistry, 1-12. Article ID 9010348. DOI: https://doi.org/10.1155/2020/9010348
Hu, X., Cao, J., Yang, H., Li, D., et al. (2020). Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS ONE, 15(1), e0226557. https://doi.org/10.1371/journal.pone.0226557 DOI: https://doi.org/10.1371/journal.pone.0226557
Imamoglu, M., & Tekir, O. (2008). Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 228, 108-113. https://doi.org/10.1016/j.desal.2007.08.011 DOI: https://doi.org/10.1016/j.desal.2007.08.011
Irawati, Y., Kusnoputranto, H., Achmadi, U.F., Safrudin, A., et al. (2022). Blood lead levels and lead toxicity in children aged 1-5 years of Cinangka Village, Bogor Regency. PLoS ONE, 17(2), e0264209. https://doi.org/ 10.1371/journal.pone.0264209 DOI: https://doi.org/10.1371/journal.pone.0264209
ISTA (2008). International rules for seed testing. International Seed Testing Association. ISTA Secretariat, Switzerland.
Javaid, A., Bajwa, R., & Manzoor, T. (2011). Biosorption of heavy metals by pretreated biomass of Aspergillusniger. Pakistan Journal of Botany,43(1), 419-425.
Kapoor, R.T. (2022).Evaluation of the biosorption potential of Aspergillus flavus biomass for removal of chromium (VI) from an aqueous solution. Journal of Applied Biology and Biotechnology, 10(02), 59-67. https://doi.org/10.7324/JABB.2022.100208 DOI: https://doi.org/10.7324/JABB.2022.100208
Kumara, G.M.P., Kawamoto, K., Saito, T., Hamamoto, S., et al. (2019). Evaluation of autoclaved aerated concrete fines for removal of Cd(II) and Pb(II) from wastewater. Journal of Environmental Engineering, 145, 1943-7870. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001597
Lodeiro, C., Capelo, J.L., Oliveira, E., Lodeiro, J.F., et al. (2019). New toxic emerging contaminants: beyond the toxological effects. Environmental Science and Pollution Research, 26,1-4. https://doi.org/10.1007/s11356-018-3003-1 DOI: https://doi.org/10.1007/s11356-018-3003-1
Mahish, P. K., Tiwari, K.L. & Jadhav, S.K. (2018). Biosorption of lead by biomass of resistant Penicillium oxalicum isolated from industrial effluent. Journal of Applied Sciences, 18 (1), 41-47. https://doi.org/10.3923/jas.2018.41.47. DOI: https://doi.org/10.3923/jas.2018.41.47
Mahmud, H.N.M.E., Huq, A.O., & Binti Yahya, R. (2016). The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review. RSC Advances, 6, 14778-14791. https://doi.org/10.1039/C5RA24358K DOI: https://doi.org/10.1039/C5RA24358K
Mali, A., Pandit, V., & Majumder, D.R. (2014). Biosorption and desorption of zinc and nickel from wastewater by using dead fungal biomass of Aspergillus flavus. International Journal of Technical Research and Applications, 2(6), 42-46.
Mouni, L., Merabet, D., Bouzaza, A., Belkhiri, L., et al. (2011). Adsorption of Pb (II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination, 276, 148-153.http://doi.org/10.1016/j.desal.2011.03.038 DOI: https://doi.org/10.1016/j.desal.2011.03.038
Ng, C., Losso, J.N., Marshall, W.E., Rao, R.M., et al. (2002). Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system. Bioresource Technology, 85, 131-135. https://doi.org/10.1016/ s0960-8524(02)00093-7 DOI: https://doi.org/10.1016/S0960-8524(02)00093-7
Paul, M.L., Samuel, J., Chandrasekaran, N., Mukherjee, A., et al. (2012). Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biosorbent of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chemical Engineering Journal, 187, 104-113. http://doi.org/10.1016/j.cej.2012.01.106 DOI: https://doi.org/10.1016/j.cej.2012.01.106
Pehlivan, E., Yanık, B.H., Ahmetli, G., Pehlivan, M., et al. (2008). Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresource Technology, 99, 3520-3527.http://doi.org/10.1016/j.biortech.2007.07.052 DOI: https://doi.org/10.1016/j.biortech.2007.07.052
Rao, P.R., & Bhargavi, C. (2013). Studies on biosorption of heavy metals using pretreated biomass of fungal species. International Journal of Chemistry and Chemical Engineering,3(3), 171-180.
Saad, A.M. (2015). Factors affecting cobalt uptake by cobalt-trained Mucor rouxii NRRL 1894 biomass. European Journal of Biotechnology and Bioscience, 3(3), 1-6.
Saad, A.M., Moataza, M.S., Hassan, H.M., Ibrahim, N.A., et al. (2016). Optimization study for β-mannanase production from locust bean gum by a local Aspergillus tamarii NRC 3 isolate. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(6), 2597-2609.
Salihi, I.U., Kutty, S.R.M., & Isa, M.H. (2017). Adsorption of lead ions onto activated carbon derived from sugarcane bagasse, IOP
Conference Series: Materials Science and Engineering, 201, 012034. http://doi.org/10.1088/1757-899X/201/1/012034 DOI: https://doi.org/10.1088/1757-899X/201/1/012034
Salihi, I.U., Kutty, M., Rahman, S., Hasnain Isa, M., et al. (2016). Sorption of copper and zinc from aqueous solutions by microwave incinerated sugarcane bagasse ash. Applied Mechanics and Materials, 378-385. https://doi.org/10.4028/www.scientific.net/ AMM.835.378 DOI: https://doi.org/10.4028/www.scientific.net/AMM.835.378
Sarikaya, A.G. (2019). Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, 42, 1-10. http://doi.org/ 10.1080/09593330.2019.1620867 DOI: https://doi.org/10.1080/09593330.2019.1620867
Sarma, G.V.S., Rani, K.S., Chandra, K.S., Babu, B.K., et al. (2020). Potential removal of phenol using modified laterite adsorbent. Indian Journal of Biochemistry and Biophysics, 57(5), 613-619.
Shao, Y., Yan, T., Wang, K., Huang, S., et al. (2020). Soil heavy metal lead pollution and its stabilization remediation technology. Energy Reports, 6 (8), 122-127. https://doi.org/10.1016/ j.egyr.2020.11.074. DOI: https://doi.org/10.1016/j.egyr.2020.11.074
Sharma, P., & Dubey, R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. DOI: https://doi.org/10.1590/S1677-04202005000100004
Trikkaliotis, D.G., Ainali, N.M., Tolkou, A.K., Mitropoulos, A.C., et al. (2022) Removal of heavy metal ions from wastewaters by using chitosan/poly(vinyl alcohol) adsorbents: a review. Macromol, 2, 403-425. https://doi.org/10.3390/macromol2030026. DOI: https://doi.org/10.3390/macromol2030026
Wang, C., Wang, X., Li, N., Tao, J., et al. (2022) Adsorption of lead from aqueous solution by biochar: a review. Clean Technology, 4, 629-652. https:// doi.org/10.3390/cleantechnol4030039 DOI: https://doi.org/10.3390/cleantechnol4030039
Wang, Y., Li, H., Cui, S., Wei, Q., et al. (2021). Adsorption behavior of lead ions fromwastewater on pristine and aminopropyl-modified blast furnace slag. Water, 13, 2735. https:// doi.org/ 10.3390/w13192735 DOI: https://doi.org/10.3390/w13192735
Yin, K., Wang, Q., Lv, M., Chen, L., et al. (2018). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553-1563. https://doi.org/10.1016/ j.cej.2018.10.226 DOI: https://doi.org/10.1016/j.cej.2018.10.226
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.