In-silico designing of an inhibitor against mTOR FRB domain: Therapeutic implications against breast cancer
DOI:
https://doi.org/10.18006/2022.10(5).1016.1023Keywords:
Breast Cancer, FRB domain, mTOR/P13K/AKT pathway, Therapeutics, Structure InhibitorsAbstract
Worldwide breast cancer causes significant fatalities in women. The effective therapeutic solution for treating the disease is using new and probable antagonistic biologically available ligands as anticancer drugs. To identify a successful therapeutic approach, the scientific community is now interested in creating novel ligands that in the future may be used as anticancer drugs. The mechanistic target of rapamycin (mTOR) is a protein kinase connected to several processes governing immunity, metabolism, cell development, and survival. The proliferation and metastasis of tumors have both been linked to the activation of the mTOR pathway. Female breast cancer represents about 15.3% of all new cancer cases in the U.S. alone and is frequently diagnosed among women aged 55 to 69 years. Given that the P13K/AKT/mTOR pathway is one of the most often activated in cancer, much attention has been paid to its resistance as a novel oncological treatment approach. mTOR/FRB Domain’s recruitment cleft as, well as substrate recruitment mechanism, was targeted using a structural-based approach. A series of selective inhibitory small molecules have been designed and screened for the best inhibiting target binding triad of the FRB Domain with better ADME and no detectable toxic effects.
References
Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D: Biological Crystallography, 66, 213-221. DOI: https://doi.org/10.1107/S0907444909052925
Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E. & Kappo, A. P. (2018). Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer. International Journal of Molecular Sciences, 19, 386. DOI: https://doi.org/10.3390/ijms19020386
Bansal, P., Tuli, H. S., Sharma, V., Mohapatra, R. K., Dhama, K., & Priti, A. K. (2022). Targeting Omicron (B. 1.1. 529) SARS CoV-2 spike protein with selected phytochemicals: an in-silico approach for identification of potential drug. Journal of Experimental Biology and Agricultural Sciences, 10 (2), 396-404. DOI: https://doi.org/10.18006/2022.10(2).396.404
Berendsen, H. (1995). vd S., D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43-56. DOI: https://doi.org/10.1016/0010-4655(95)00042-E
Cabeza de Vaca, I., Qian, Y., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2018). Enhanced Monte Carlo methods for modeling proteins including computation of absolute free energies of binding. Journal of Chemical Theory and Computation, 14, 3279-3288. DOI: https://doi.org/10.1021/acs.jctc.8b00031
Chaube, U., Chhatbar, D., & Bhatt, H. (2016). 3D-QSAR, molecular dynamics simulations and molecular docking studies of benzoxazepine moiety as mTOR inhibitor for the treatment of lung cancer. Bioorganic & Medicinal Chemistry Letters, 26, 864-874. DOI: https://doi.org/10.1016/j.bmcl.2015.12.075
Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
Kim, J., & Guan, K.L. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology , 21, 63-71. DOI: https://doi.org/10.1038/s41556-018-0205-1
Lemkul, J. (2018). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [article v1. 0]. Living Journal of Computational Molecular Science, 1, 5068. DOI: https://doi.org/10.33011/livecoms.1.1.5068
Raghav, M., Sharma, V., Chaudhary, M., Tuli, H. S., Saini, A. K. & Sharma, A. K. (2020). Essence of PTEN: a Broad-Spectrum Therapeutic Target in Cancer. Biointerface Research in Applied Chemistry, 11(2), 9587-9603. DOI: https://doi.org/10.33263/BRIAC112.95879603
Raghav, M., Sharma, V., Gupta, S., Kaushal, A., et al. (2022). In-silico designing of a potent ligand molecule against PTEN (Phosphatase and tensin homolog) implicated in Breast Cancer. Journal of Experimental Biology and Agricultural Sciences, 10, 840-845. DOI: https://doi.org/10.18006/2022.10(4).840.845
Ram, G., Sharma, V., Sheikh, I., Sankhyan, A., Aggarwal, D. & Sharma, A. (2020). Anti-cancer potential of natural products: recent trends, scope and relevance. Letters in Applied NanoBioScience, 9 (1), 902–7. DOI: https://doi.org/10.33263/LIANBS91.902907
Samanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., et al. (2010). Anti-tumor activity of a new series of benzoxazepine derivatives in breast cancer. Bioorganic & Medicinal Chemistry letters, 20, 283-287. DOI: https://doi.org/10.1016/j.bmcl.2009.10.115
Sehrawat, N., Yadav, M., Singh, M., Kumar, V., Sharma, V. & Sharma, A. (2020). Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology, 70, 24-36. DOI: https://doi.org/10.1016/j.semcancer.2020.06.009
Sharma, A. K., Sharma, V. R., Gupta, G. K., Ashraf, G. M., & Kamal, M. A. (2019a). Advanced Glycation End Products (AGEs), Glutathione and Breast Cancer: Factors, Mechanism and Therapeutic Interventions. Current Drug Metabolism, 20, 65-70. DOI: https://doi.org/10.2174/1389200219666180912104342
Sharma, V. (2020). Bioinformatics and its applications in environmental science and health and its applications in other disciplines. Sambodhi, 4, 88-93.
Sharma, V. (2022). PI3Kinase/AKT/mTOR Pathway in Breast Cancer; Pathogenesis and Prevention with mTOR Inhibitors. Proceedings of IVSRTLSB-2021, 7(1), 184-191..
Sharma, V. R., Gupta, G. K., Sharma, A. K., Batra, N., Sharma, D. K., Joshi, A., & Sharma, A. K. (2017). PI3K/Akt/mTOR Intracellular Pathway and Breast Cancer: Factors, Mechanism and Regulation. Current Pharmaceutical Design, 23(11), 1633–1638. https://doi.org/10.2174/1381612823666161116125218. DOI: https://doi.org/10.2174/1381612823666161116125218
Sharma, V. R., Sharma, D. K., Navnit Mishra, A. K. S., & Batra, N. (2010). New and potential therapies for the treatment of Breast Cancer: An update for oncologists. Current Trends in Biotechnology & Chemical Research, 6(1),23-29.
Sharma, V., & Sharma, A. K. (2021). An In-Silico Approach for Designing a Potential Antagonistic Molecule Targeting β 2-adrenoreceptor Having Therapeutic Significance. Letters in Applied NanoBioScience, 10, 2063-2069. DOI: https://doi.org/10.33263/LIANBS101.20632069
Sharma, V., Panwar, A., & Sharma, A. K. (2020). Molecular dynamic simulation study on chromones and flavonoids for the in silico designing of a potential ligand inhibiting mTOR pathway in breast cancer. Current Pharmacology Reports, 6, 373-379. DOI: https://doi.org/10.1007/s40495-020-00246-1
Sharma, V., Panwar, A., & Sharma, A. K. (2021a). P13K/AKT/mTOR Pathway-Based Novel Biomarkers for Breast Cancer. Re: GEN Open, 1(1), 83-91. DOI: https://doi.org/10.1089/regen.2021.0015
Sharma, V., Panwar, A., Gupta, G. & Sharma, A. (2022a). Molecular docking and MD: mimicking the real biological process. Physical Sciences Reviews. https://doi.org/10.1515/psr-2018-0164 DOI: https://doi.org/10.1515/psr-2018-0164
Sharma, V., Panwar, A., Sharma, A., Punj, V., Saini, R. V., Saini, A. K., & Sharma, A. K. (2022b). A comparative molecular dynamic simulation study on potent ligands targeting mTOR/FRB domain for breast cancer therapy. Biotechnology & Applied Biochemistry, 69, 1339-1347. DOI: https://doi.org/10.1002/bab.2206
Sharma, V., Sharma, A. K., Punj, V., & Priya, P. (2019b). Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: a focus on breast cancer. Seminars in Cancer Biology, 59, 133-146. DOI: https://doi.org/10.1016/j.semcancer.2019.08.005
Sharma, V., Sharma, N., Sheikh, I., Kumar, V., et al. (2021b). Probiotics and prebiotics having broad spectrum anticancer therapeutic potential: Recent trends and future perspectives. Current Pharmacology Reports, 7, 67-79. DOI: https://doi.org/10.1007/s40495-021-00252-x
Singh, M., Kumar, V., Sehrawat, N., Yadav, M., et al. (2022). Current paradigms in epigenetic anticancer therapeutics and future challenges. Seminars in Cancer Biology, 83, 422-440. DOI: https://doi.org/10.1016/j.semcancer.2021.03.013
Sjöholm, E., & Sandler, N. (2019). Additive manufacturing of personalized orodispersible warfarin films. International Journal of Pharmaceutics, 564, 117-123. DOI: https://doi.org/10.1016/j.ijpharm.2019.04.018
Sun, R., Cheng, E., Velásquez, C., Chang, Y., & Moore, P. S. (2020). Correction: Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E). Journal of Biological Chemistry, 295, 4760. DOI: https://doi.org/10.1074/jbc.AAC120.013398
Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. Journal of DOI: https://doi.org/10.1021/acs.jctc.1c00645
Chemical Theory and Computation, 17, 6281-6291.
Wakchaure, P. D., & Ganguly, B. (2021). Tuning the electronic effects in designing ligands for the inhibition of rotamase activity of FK506 binding protein. Theoretical Chemistry Accounts, 140, 1-10. DOI: https://doi.org/10.1007/s00214-020-02717-6
Wang, R., Gao, Y., & Lai, L. (2000). LigBuilder: a multi-purpose program for structure-based drug design. Molecular Modeling Annual, 6, 498-516. DOI: https://doi.org/10.1007/s0089400060498
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12, 7-8. DOI: https://doi.org/10.1038/nmeth.3213
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.