Characterization of Calcium Phosphate Chitosan Nanocomposite as Plant Growth Promoter
DOI:
https://doi.org/10.18006/2022.10(3).567.574Keywords:
CaP-CS NC, Characterization, Plant growth stimulator, Plant growth promoterAbstract
In this study, calcium phosphate-chitosan nanocomposite (CaP-CS NC) was prepared by a convenient and affordable co-precipitation method, and the prepared NC was tested for agriculture application. Physico-chemicals analyses of the CaP-CS NC were conducted by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis) instruments to determine the structural characteristics, surface topology, chemical composition, function group, and optical properties. The XRD pattern of CaP-CS NC revealed that the average crystallite size was 43 nm. The SEM images showed agglomeration of the CaP-CS NC with a rod-like shape. The EDS spectrum of the CaP-CS NC indicated the presence of Ca, P, O, and N elements. FTIR displayed vibrational peaks for the active functional group such as carboxylic (C=O), amines (N-H), hydroxyl (O-H), and alkyne (C-H). Furthermore, the spectrum of CaP-CS NC showed the bending mode of phosphates at 588.37 cm-1 and 508.45 cm-1. The UV-Vis-NIR spectrum of the prepared nanocomposite indicates the anti-reflection properties, which might be useful in solar cell applications to increase the efficiency of the solar cell. In addition, the prepared CaP-CS NC was tested for the plant growth stimulator properties at the lab scale level, wherein it exhibited substantial growth. Accordingly, the current study suggests that the prepared CaP-CS NC could be used as a plant growth promoter.
References
Asep, B.D.N., Rosi, O., & Risti. R, (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science & Technology, 4(1), 91-118. DOI: https://doi.org/10.17509/ijost.v4i1.15806
Ates, B., Koytepe, S., Balcioglu, S., Ulu, A., & Gurses, C., (2017). Biomedical applications of hybrid polymer composite materials. In V. K. Thakur, M. K. Thakur, A. Pappu (eds.), Hybrid Polymer Composite Materials (pp. 343-408), Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-100785-3.00012-7
Cita, L., Fenny, M.D., Veinardi, S., & Muhammad, R. (2018). Effect of chitosan and chitosan-nanoparticles on post-harvest quality of banana fruits. Journal Plant Biotechnology, 45, 36-44. DOI: https://doi.org/10.5010/JPB.2018.45.1.036
Daniel, E.A., Humberto, J.A., & William, E.V. (2012). Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Optical Materials, 35(2), 175-183. DOI: https://doi.org/10.1016/j.optmat.2012.07.024
Esumi, K., Takei, N., & Yoshimura, T. (2003). Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 32(2), 117-23. DOI: https://doi.org/10.1016/S0927-7765(03)00151-6
Huang, H., Yuan, Q., & Yang, X. (2004). Preparation and characterization of metal-chitosan nanocomposites. Colloids and surfaces B: Biointerfaces, 25(39), 31-37. DOI: https://doi.org/10.1016/j.colsurfb.2004.08.014
Huang, K., Pan, W., Zhu, J., Li, J.C., et al. (2015). Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces. Scientific Reports, 5, 18331. https://doi.org/10.1038 /srep18331 DOI: https://doi.org/10.1038/srep18331
Husen, A., & Siddiqi, K.S. (2014). Plants and microbes assisted selenium nanoparticles: characterization and application. Journal of Nanobiotechnology, 12(1), 1-10. DOI: https://doi.org/10.1186/s12951-014-0028-6
Husen, A. (2021). Cross Talk Between Autophagy and Hormones for Abiotic Stress Tolerance in Plants. In A Husen (ed.) Plant performance under environmental stress (Hormones, Biostimulants and Sustainable Plant Growth Management). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-78521-5
Jun, W., Bin, C., Dong, Z., Yan, P., et al. (2013). Peptide decorated calcium phosphate/carboxymethyl chitosan hybrid nanoparticles with improved drug delivery efficiency. International Journal of Pharmaceuticals, 446, 206-210. DOI: https://doi.org/10.1016/j.ijpharm.2013.02.028
Kamle, M., Mahato, D.K., Devi, S., Soni, R., et al. (2020). Nanotechnological interventions for plant health improvement and sustainable agriculture. 3 Biotech, 10(4), 1-1. DOI: https://doi.org/10.1007/s13205-020-2152-3
Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., et al. (2019). Surface Study of Fe3O4 Nanoparticles Functionalized with Biocompatible Adsorbed Molecules. Frontiers in Chemistry,7, 642. doi: 10.3389/fchem.2019.00642 DOI: https://doi.org/10.3389/fchem.2019.00642
Manikantan, J., Ramalingam, H.B., Chandar Shekar, B., Murugan, B., et al. (2017). Wide band gap of Strontium doped Hafnium oxide nanoparticles for opto-electronic device applications-Synthesis and characterization. Materials Letters,186, 42-44 DOI: https://doi.org/10.1016/j.matlet.2016.08.026
Milon, B., & Tarakdas, B. (2014). Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA. Dalton Transactions,43, 3244-3259. DOI: https://doi.org/10.1039/C3DT52522H
Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S.A. (2020). Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Frontiers in Nanotechnology, 4(2), 10. DOI: https://doi.org/10.3389/fnano.2020.579954
Pandey, P., Verma, M.K., & De, N. (2018). Chitosan in agricultural context-A review. Bulletin Environment Pharmacology and Life Science,4(7), 87-96.
Peipei, W., Caihong, L., Haiyan, G., Xuerong, J., et al. (2010). Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 203, 315-321. DOI: https://doi.org/10.1016/j.powtec.2010.05.023
Salama, A. (2016). Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. Journal of Carbohydrate Chemistry, 35(3), 131-149. DOI: https://doi.org/10.1080/07328303.2016.1154152
Salama, A. (2017). Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite material. Environmental nanotechnology, monitoring & management, 8, 228-32 DOI: https://doi.org/10.1016/j.enmm.2017.08.003
Salama, A., Abou-Zeid, R.E., Cruz-Maya, I., & Guarino, V. (2020). Soy protein hydrolysate grafted cellulose nanofibrils with bioactive signals for bone repair and regeneration. Carbohydrate polymers, 229, 115472. DOI: https://doi.org/10.1016/j.carbpol.2019.115472
Salama, A., Abou-Zeid, R.E., & El-Sakhawy, M. (2016). Calcium phosphate mineralization controlled by carboxymethyl cellulose-g-polymethacrylic acid. Soft Materials, 14(3), 154-161. DOI: https://doi.org/10.1080/1539445X.2016.1171781
Shahrajabian, M.H., Chaski, C., Polyzos, N., Tzortzakis, N., & Petropoulos, S.A. (2021). Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11(6), 819. DOI: https://doi.org/10.3390/biom11060819
Smith, A.M., Nie, S. (2010). Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Accounts of Chemical Research, 43(2),190-200. DOI: https://doi.org/10.1021/ar9001069
Upadhyaya, H., Begum, L., Dey, B., Nath, P.K., & Panda, S.K. (2017). Impact of calcium phosphate nanoparticles on rice plant. Journal of Plant Science and Phytopathology, 1, 1-0. DOI: https://doi.org/10.29328/journal.jpsp.1001001
Yu, J., Wang, D., Geetha, N., Khalid, M.K., et al. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 5, 117904. DOI: https://doi.org/10.1016/j.carbpol.2021.117904
Downloads
Published
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.