Host-delivered-RNAi-mediated resistance in bananas against biotic stresses

Authors

  • Panchashree Das Department of Biotechnology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha
  • Satyabrata Nanda Department of Biotechnology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha https://orcid.org/0000-0001-9729-1788

DOI:

https://doi.org/10.18006/2022.10(5).953.959

Keywords:

Biotic stresses, Pathogen attack, ds-RNA, HIGS, HD-RNAi

Abstract

Both the biotic and abiotic stressors restrict the yield potential of many crops, including bananas. Bananas belong to the genus Musa and are the world’s most popular and widely produced fruit for their nutritional and industrial importance. The demand for bananas is growing each day worldwide. However, different pest infestations are hampering the production of bananas, making it a matter of concern for global food security. Several biotechnological tools and applications including RNA interference (RNAi) have been employed to enhance the biotic stress resistance in plants. The capacity to silence targeted genes at transcriptional and post-transcriptional levels makes the RNAi technique a popular choice for gene knock-down and functional genomics studies in crops. Silencing of different suppressor molecule coding genes through RNAi helps crops to combat the detrimental effects of plant pathogens. The host-induced gene silencing (HIGS) technology, also known as the host-delivered RNAi (HD-RNAi), is nowadays gaining popularity due to its ability to target an array of pathogens, comprising bacteria, nematodes, fungi, viruses, and insects. This methodology is employed to manage disease pest outbreaks in a diverse range of crop species, including bananas. Besides HIGS, virus-induced and spray-induced gene silencing (VIGS and SIGS, respectively) are the potential approaches where RNAi technology is exploited to control plant-pathogenic diseases. The current review emphasizes the different kinds of diseases of bananas and the potential of HD-RNAi, a new-age and promising technology to build a barrier against significant crop and economic loss.

References

Atkinson, H. J., Grimwood S., Johnston K. A., & Green J. (2004). Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Research, 13, 135–142. DOI: https://doi.org/10.1023/B:TRAG.0000026070.15253.88

Bharat, S.S., Sahu, S., Sahu, S.S., Mohanty, P., Nanda, S. & Mishra, R.(2021). RNA Interference: A Functional Genomics Approach for Plant Disease Management. Asian Journal of Biological and Life Sciences, 10(2), 309. DOI: https://doi.org/10.5530/ajbls.2021.10.43

Blomme, G., Dita, M., Jacobsen, K.S., Pérez Vicente, L., et al. (2017). Bacterial diseases of bananas and enset: current state of knowledge and integrated approaches toward sustainable management. Frontiers in plant science, 1290. https://doi.org/10.3389/fpls.2017.01290 DOI: https://doi.org/10.3389/fpls.2017.01290

Dou, T., Shao, X., Hu, C., Liu, S., et al. (2020). Host‐induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnology Journal, 18(1), 11. DOI: https://doi.org/10.1111/pbi.13204

Elayabalan, S., Kalaiponmani, K., Subramaniam, S., Selvarajan, R., et al.(2013). Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World Journal of Microbiology and Biotechnology, 29(4), 589-596. DOI: https://doi.org/10.1007/s11274-012-1214-z

Elayabalan, S., Subramaniam, S., & Selvarajan, R. (2017). Construction of BBTV rep gene RNAi vector and evaluate the silencing mechanism through injection of Agrobacterium tumefaciens transient expression system in BBTV infected hill banana plants cv. Virupakshi (AAB). Indian Journal of Natural Sciences, 7(42), 12395–12403.

Escobar, M. A., Civerolo, E. L., Summerfelt, K. R., & Dandekar, A. M. (2001).RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences, 98, 13437–42. DOI: https://doi.org/10.1073/pnas.241276898

FAOSTAT. (2018). Disponível em: http://www. fao. org/faostat/en/# home. Acesso em, 30.

Fei, S., Constantin, M., Peters, J., Batley, J., Aitken, E., & Mitter, N. (2016). RNAi-based management for Fusarium wilt of banana. In International Symposia on Tropical and Temperate Horticulture-ISTTH2016, Cairns, Queensland, Australia, 1205 (pp. 717-720). DOI: https://doi.org/10.17660/ActaHortic.2018.1205.88

Ghag, S.B. & Ganapathi, T.R. (2019). RNAi-mediated protection against banana diseases and pests. 3 Biotech, 9(3), 1-8. DOI: https://doi.org/10.1007/s13205-019-1650-7

Ghag, S.B., Shekhawat, U.K. & Ganapathi, T.R. (2014). Host‐induced post‐transcriptional hairpin RNA‐mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnology Journal, 12(5), 541-553. DOI: https://doi.org/10.1111/pbi.12158

Ghag, S.B., Shekhawat, U.K., & Ganapathi, T.R. (2015). Fusarium wilt of banana: biology, epidemiology, and management. International Journal of Pest Management, 61(3), 250-263. DOI: https://doi.org/10.1080/09670874.2015.1043972

Jekayinoluwa, T., Tripathi, J.N., Dugdale, B., Obiero, G., et al. (2021). Transgenic expression of dsRNA targeting the Pentalonia nigronervosa acetylcholinesterase gene in banana and plantain reduces aphid populations. Plants, 10(4), 613. DOI: https://doi.org/10.3390/plants10040613

Jekayinoluwa, T., Tripathi, J.N., Obiero, G., Muge, E., Dale, J. & Tripathi, L. (2020a). Developing Plantain for Resistance to Banana Aphids by RNA Interference. Proceedings, 36(1), 54. DOI: https://doi.org/10.3390/proceedings2019036054

Jekayinoluwa, T., Tripathi, L., Tripathi, J.N., Ntui, V.O., et al. (2020b). RNAi technology for the management of banana bunchy top disease. Food and Energy Security, 9(4), e247. DOI: https://doi.org/10.1002/fes3.247

Jiang, C.J., Shimono, M., Maeda, S., Inoue, H., et al. (2009). Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular Plant-microbe Interactions, 22(7), 820-829. DOI: https://doi.org/10.1094/MPMI-22-7-0820

Kakrana, A., Kumar, A., Satheesh, V., Abdin, M.Z., et al. (2017). Identification, validation and utilization of novel nematode-responsive root-specific promoters in Arabidopsis for inducing host-delivered RNAi mediated root-knot nematode resistance. Frontiers in plant science, 8, 2049. https://doi.org/10.3389/ fpls.2017.02049 DOI: https://doi.org/10.3389/fpls.2017.02049

Krishna, B., Kadu, A.A., Vyavhare, S.N., Chaudhary, R.S., et al.(2011). RNAi-mediated resistance against banana bunchy top virus (BBTV) in 'Grand Nain' banana. In II Genetically Modified Organisms in Horticulture Symposium, 974, 157-164. DOI: https://doi.org/10.17660/ActaHortic.2013.974.18

Li, Y., Wang K., & Xie H. (2015). Cathepsin B cysteine proteinase is essential for the development and pathogenesis of the plant parasitic nematode Radopholus similis. International Journal of Biological Sciences, 11, 1073-1087. DOI: https://doi.org/10.7150/ijbs.12065

Mohandas, S. & Ravishankar, K. V. Eds. (2016). Banana: genomics and transgenic approaches for genetic improvement. Berlin/Heidelberg, Germany: Springer, pp. 1-346. DOI: https://doi.org/10.1007/978-981-10-1585-4

Mumbanza, F. M., Kiggundu, A., Tusiime, G.,Tushemereirwe, W.K.; Niblett, C. & Bailey, A. (2013). In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. Pest Management Science, 69, 1155-1162. DOI: https://doi.org/10.1002/ps.3480

Mwaka, H.S., Christiaens, O., Bwesigye, P.N., Kubiriba, J., et al.(2021). First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. Insects, 13(1), 40. DOI: https://doi.org/10.3390/insects13010040

Namukwaya, B., Tripathi L., Tripathi J. N., Arinaitwe G., Mukasa S. B., & Tushemereirwe W. K. (2012). Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Research, 4, 855–865. DOI: https://doi.org/10.1007/s11248-011-9574-y

Ocimati, W., Kiggundu, A., Bailey, A., Niblett, C.L., et al. (2014). Suppression of the ubiquitin E2 gene through RNA interference causes mortality in the banana weevil, Cosmopolites sordidus (Germar). In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014, Brisbane, Australia: IX 1114 (pp. 181-190). DOI: https://doi.org/10.17660/ActaHortic.2016.1114.25

Papolu, P. K., Gantasala N. P., Kamaraju D., Banakar P., Sreevathsa R., & Rao U. (2013). Utility of host delivered RNAi of two FMRF amide like peptides, flp‐14 and flp‐18, for the management of root knot nematode, Meloidogyne incognita. PLoS ONE, 8, e80603. DOI: https://doi.org/10.1371/journal.pone.0080603

Pillay, M., Ude, G., & Kole, C. Eds. (2012). Genetics, genomics, and breeding of bananas. CRC Press. DOI: https://doi.org/10.1201/b11776

Ronald, P., & Joe, A. (2018). Molecular mimicry modulates plant host responses to pathogens. Annals of Botany, 121, 17–23. DOI: https://doi.org/10.1093/aob/mcx125

Rs, L., Ck, H., Kb, S. & Alex, S. (2021). Transgenic banana plants carrying ihpRNA cassette targeting viral replicase gene show resistance against Banana bract mosaic virus. The Journal of Horticultural Science and Biotechnology, 96(3), 324-329. DOI: https://doi.org/10.1080/14620316.2020.1853613

Shekhawat, U.K., Ganapathi, T.R. & Hadapad, A. B. (2012). Transgenic banana plants expressing small interfering RNAs

targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. Journal of General Virology, 93(8), 1804-1813. DOI: https://doi.org/10.1099/vir.0.041871-0

Tan, J. A. C. H., Jones M. G. K., & Fosu‐Nyarko J. (2013). Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Experimental Parasitology, 133, 166–178. DOI: https://doi.org/10.1016/j.exppara.2012.11.011

Taning, C.N.T., Mezzetti, B., Kleter, G., Smagghe, G. & Baraldi, E. (2021). Does RNAi-based technology fit within EU sustainability goals?. Trends in Biotechnology, 39(7), 644-647. DOI: https://doi.org/10.1016/j.tibtech.2020.11.008

Thomas, E., Noar, R.D. & Daub, M. E. (2021). A polyketide synthase gene cluster required for pathogenicity of Pseudocercospora fijiensis on banana. Plos one, 16(10), e0258981. DOI: https://doi.org/10.1371/journal.pone.0258981

Tripathi, J. N., Lorenzen J., Bahar O., Ronald P., & Tripathi, L. (2014b). Transgenic expression of the rice Xa21 pattern‐recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnology Journal, 12, 663-673. DOI: https://doi.org/10.1111/pbi.12170

Tripathi, L., Atkinson, H., Roderick, H., Kubiriba, J. & Tripathi, J. N. (2017). Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food and Energy Security, 6(2), 37-47. DOI: https://doi.org/10.1002/fes3.101

Tripathi, L., Babirye A., Roderick H., Tripathi J. N., et al. (2015). Field resistance of transgenic plantain to nematodes has potential for future African food security. Scientific Reports, 5, 8127. DOI: https://doi.org/10.1038/srep08127

Tripathi, L., Mwaka H., Tripathi J. N., & Tushemereirwe W. K. (2010). Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. Musacearum. Molecular Plant Pathology, 11, 721-731. DOI: https://doi.org/10.1111/j.1364-3703.2010.00639.x

Tripathi, L., Tripathi J. N., Kiggundu A., Korie S., Shotkoski F., & Tushemereirwe W. K. (2014a). Field trial of Xanthomonas wilts disease‐resistant bananas in East Africa. Nature Biotechnology, 32, 868-870. DOI: https://doi.org/10.1038/nbt.3007

Younis, A., Siddique, M. I., Kim, C. K., Lim, K. B. (2014). RNA interference (RNAi) induced gene silencing: A promising approach of hi-Tech plant breeding. International Journal of Biological Sciences, 10,1150-1158. DOI: https://doi.org/10.7150/ijbs.10452

Yu, Z., Xiong J., Zhou Q., Luo H., et al. (2015). The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root‐knot nematode Meloidogynehapla. Journal of Invertebrate Pathology, 125, 73-80. DOI: https://doi.org/10.1016/j.jip.2014.12.011

Downloads

Published

2022-10-31

How to Cite

Das, P., & Nanda, S. (2022). Host-delivered-RNAi-mediated resistance in bananas against biotic stresses. Journal of Experimental Biology and Agricultural Sciences, 10(5), 953–959. https://doi.org/10.18006/2022.10(5).953.959

Issue

Section

REVIEW ARTICLES