NEXT GENERATION SEQUENCING TECHNOLOGIES TOWARDS EXPLORATION OF MEDICINAL PLANTS
DOI:
https://doi.org/10.18006/2021.9(4).507.516Keywords:
Medicinal Plants, Next Generation Sequencing, Transcriptomics, Genomics, Ilumina, PacBio, Ion TorrentAbstract
With the ever-increasing population, the plant cover is decreasing at an alarming rate. The medicinal plants are most affected by this because they are present in the last tier of cultivation. Let it be pharmaceutical companies or people using it for herbalism, medicinal plants have been exploited without getting a chance to flourish in their natural environment. Modern biotechnology acts as a bridge between the cultivation and utilization of medicinal plants. Next Generation Sequencing (NGS) technology which is a decade old but emerging field helps to unveil the importance of medicinal plants. Thus, it paves the way for sustenance of medicinal plants by molecular breeding, micropropagation, large-scale tissue culture, and other methods to conserve the plants with great medicinal value. Various NGS technologies can be found in the market like Ilumina, PacBio, Ion Torrent, and others. The present review will summarize the NGS technologies and their potential use to study the genomes, transcriptome, epigenome, and interactome of medicinal plants towards the identification of bioactive compounds.
References
Balaji R, Ravichandiran K, Tanuja, Parani M (2021) The complete chloroplast genome of Ocimum gratissimum from India–a medicinal plant in the Lamiaceae. Mitochondrial DNA Part B, 6(3), 948-950.
Behjati S, Tarpey PS (2013) What is next generation sequencing? Archives of disease in Childhood. Education and Practice Edition 98(6): 236–238.
Chen J, Dong X, Li Q, Zhou X, Gao S, Chen R, et al. (2013) Biosynthesis of the active compounds of Isatisindigotica based on transcriptome sequencing and metabolites profiling. BMC Genomics 14(1): 1-13. https://doi.org/10.1186/1471-2164-14-857.
Cheng X, Su X, Chen X, Zhao H, Bo C, Xu J, et al. (2014) Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for LiuweiDihuang Wan. Scientific Reports 4(1): 1-12. https://doi.org/10.1038/srep05147.
Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnology Journal 8(1): 2-9. https://doi.org/10.1111/j.1467-7652.2009.00459.x.
Egan AN, Schlueter J, Spooner DM (2012) Applications of next‐generation sequencing in plant biology. American Journal of Botany 99(2): 175-185. https://doi.org/10.3732/ajb.1200020.
Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241(2): 303-317. https://doi.org/10.1007/s00425-014-2232-x.
Gaquerel E, Kuhl C, Neumann S (2013) Computational annotation of plant metabolomics profiles via a novel network-assisted approach. Metabolomics 9(4): 904-918. https://doi.org/10.1007/ s11306-013-0504-2.
Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods 5(3): 235-237. https://doi.org/10.1038/nmeth.1184.
Hamilton JP, Robin Buell C (2012) Advances in plant genome sequencing. The Plant Journal 70(1): 177-190. https://doi.org/ 10.1111/ j.1365-313X.2012.04894.x
Hirsch CN, Robin Buell C (2013) Tapping the promise of genomics in species with complex, non-model genomes. Annual Review of Plant Biology 64: 89-110. https://doi.org/10.1146/ annurev-arplant-050312-120237.
Hu L, Hao C, Fan R, Wu B, Tan L, Wu H (2015) De novo assembly and characterization of fruit transcriptome in black pepper (Piper nigrum). PLoS one 10(6): e0129822.https://doi.org/ 10.1371/journal.pone.0136028.
Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, et al. (2015) Structural insights into µ-opioid receptor activation. Nature 524(7565): 315-321. https://doi.org/10.1038/nature14886.
Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB, Cheng XC (2013) Molecular functions of small regulatory noncoding RNA. Biochemistry (Moscow) 78(3): 221-230. https://doi.org/ 10.1134/ S0006297913030024.
Kalmankar NV, Venkatesan R, Balaram P, Sowdhamini R (2020) Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Scientific Reports 10(1): 1-20. https://doi.org/ 10.1038/s41598-020-69452-7.
Kotwal S, Kaul S, Sharma P, Gupta M, Shankar R, Jain M, Dhar MK (2016) De novo transcriptome analysis of medicinally important Plantagoovata using RNA-Seq. PLoS one 11(3): e0150273.https://doi.org/10.1371/journal.pone.0150273.
Li FS, Weng JK (2017) Demystifying traditional herbal medicine with modern approach. Nature Plants, 3(8): 1-7. https://doi.org/10.1038/nplants.2017.109.
Li MR, Shi FX, Zhou YX, Li YL, Wang XF, Zhang C, et al. (2015) Genetic and epigenetic diversities shed light on domestication of cultivated ginseng (Panax ginseng). Molecular Plant 8(11): 1612-1622. https://doi.org/10.1016/j.molp.2015.07.011.
Lin W, Sun F, Zhang Y, Xu X, Lu X, Li L, Xu R (2019) Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics. Scientific Reports 9(1): 1-12. https://doi.org/10.1038/s41598-019-48806-w.
Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. (2012) Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology . https://doi.org/10.1155/2012/251364.
Liu Y, Wang Y, Guo F, Zhan L, Mohr T, Cheng P, et al. (2017) Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Scientific Reports 7(1): 1-14. https://doi.org/ 10.1038/ srep43108.
Lo YT, Shaw PC (2019) Application of next-generation sequencing for the identification of herbal products. Biotechnology Advances, 37(8): 107450. https://doi.org/10.1016/j.biotechadv. 2019.107450.
Luo H, Chen S (2006) Progress on the Transcriptome Analysis of Medicinal Plants with Next‐Generation Sequencing Technologies. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 1-21. https://doi.org/10.1002/9780470027318.a9936.pub2.
Luo H, Li Q, Flower A, Lewith G, Liu J (2012) Comparison of effectiveness and safety between granules and decoction of Chinese herbal medicine: a systematic review of randomized clinical trials. Journal of Ethnopharmacology 140(3): 555-567. https://doi.org/10.1016/j.jep.2012.01.031.
Ma L, Dong C, Song C, Wang X, Zheng X, Niu Y, et al. (2021) De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology. Computational and Structural Biotechnology Journal 19: 3954-3963.
Metzker ML (2010) Sequencing technologies—the next generation. Nature Reviews Genetics 11(1): 31-46. https://doi.org/ 10.1038/ nrg2626.
Morgan K (2002) Medicine of the Gods: Basics Principles of Ayurvedic Medicine. Available at http://www.compulink.co.uk/∼ mandrake/Ayurveda.htm access on 29th April 2020.
Morreel K, Saeys Y, Dima O, Lu F, Van de Peer Y, Vanholme R, Boerjan W (2014) Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks. The Plant Cell 26(3): 929-945. https://doi.org/10.1105/ tpc.113.122242.
Niazian M (2019) Application of genetics and biotechnology for improving medicinal plants. Planta 249(4): 953-973.
Niazian M, Sadat Noori SA, Tohidfar M, Mortazavian SMM (2017) Essential oil yield and agro-morphological traits in some Iranian ecotypes of ajowan (Carum copticum L.). Journal of Essential Oil Bearing Plants 20(4): 1151-1156. https://doi.org/10.1080/0972060X.2017.1326849.
Nogueira M, Enfissi EM, Almeida J, Fraser PD (2018) Creating plant molecular factories for industrial and nutritional isoprenoid production. Current Opinion in Biotechnology 49: 80-87. https://doi.org/10.1016/j.copbio.2017.08.002.
Rai A, Saito K, Yamazaki M (2017b) Integrated omics analysis of specialized metabolism in medicinal plants. Available at https://doi.org/10.1111/tpj.13485 access on 29th April 2020.
Rai M, Rai A, Kawano N, Yoshimatsu K, Takahashi H, Suzuki H, et al (2017a) De novo RNA sequencing and expression analysis of Aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules 22(12): 2155. https://doi.org/10.3390/molecules22122155.
Roy NS, Choi IY, Um T, Jeon MJ, Kim BY, Kim YD, Yu JK, Kim S, Kim NS (2021) Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. Plants. 10(7):1314. https://doi.org/10.3390/ plants10071314.
Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology 94(3): 441-448. https://doi.org/10.1016/0022-2836(75)90213-2.
Scossa F, Benina M, Alseekh S, Zhang Y, Fernie AR (2018) The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Plantamedica 84(12/13): 855-873.
Sharma S, Shrivastava N (2016) Renaissance in phytomedicines: promising implications of NGS technologies. Planta 244(1): 19-38. https://doi.org/10.1007/s00425-016-2492-8.
Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nature Biotechnology 30(4): 326-328.https://doi.org/ 10.1038/nbt.2181.
Siahsar B, Rahimi M, Tavassoli A, Raissi A (2011) Application of biotechnology in production of medicinal plants. American-Eurasian Journal of Agricultural & Environmental Sciences 11(3): 439-444.
Smith AM, Heisler LE, St Onge RP, Farias-Hesson E, Wallace IM, Bodeau J, Nislow C (2010) Highly-multiplexed barcode
sequencing: an efficient method for parallel analysis of pooled samples. Nucleic Acids Research 38(13): e142-e142. https://doi.org/10.1093/nar/gkq368.
Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Current Opinion in Biotechnology 25: 103-110. https://doi.org/10.1016/j.copbio. 2013.09.010.
Wang S, Chen J, Ma J, Jin J, Chen L, Yao M (2020) Novel insight into theacrine metabolism revealed by transcriptome analysis in bitter tea (Kucha, Camellia sinensis). Scientific Reports 10(1): 1-11. https://doi.org/10.1038/s41598-020-62859-2.
Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, et al (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinonebiosynthesis. PLoS One 8(11): e80464.
Zhang D, Li W, Chen ZJ, Wei FG, Liu YL, Gao LZ (2020) SMRT-and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng. Scientific Reports 10(1): 1-14.
Zhong F, Huang L, Qi L, Ma Y, Yan Z (2020) Full-length transcriptome analysis of Coptisdeltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Molecular Biology 102(4): 477-499. https://doi.org/10.1007/ s11103-019-00959-y.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.