Aspirin regulates oxidative stress and physio-biochemical attributes in Brassica juncea under cadmium toxicity

Authors

DOI:

https://doi.org/10.18006/2022.10(5).1180.1187

Keywords:

Abiotic stress, Growth, Metal, Proline, Toxicity

Abstract

The current study aimed to evaluate the effects of aspirin (Asp) on growth, physio-biochemical variables, and oxidative stress in Brassica juncea subjected to cadmium toxicity. Cadmium (Cd) toxicity decreased the root and shoot development by 67.53 % and 64.4 % respectively, over the control. However, treatment with Asp showed improved root and shoot growth in Cd treated seedlings. This study demonstrates elevation in total soluble sugar (TSS), proline, and glycine betaine levels and suppressed total protein concentrations in Cd treated seedlings over control. On the treatment of Asp to Cd exposed plants, an enhanced level of the above said variables was reported. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and ascorbate (ASC) increased in plants with Cd stress over control, followed by enhanced elevation of the same on supplementation of Asp. Supplementation of Asp reduces the accumulation of malondialdehyde (MDA) and H2O2, confirming the plant metals' stress protection properties of Asp. Thus studies confirm aspirin's involvement in protecting plant growth and development against cadmium toxicity.

References

Aebi, H. (1984).Catalase in vitro. Methods in Enzymology, 105,121–126. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd Allah, E. F., Gucel, S., & Tran, L.S.P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Sciences, 7, 347. DOI: https://doi.org/10.3389/fpls.2016.00347

Ahmad, P., Hashem, A., AbdAllah, E.F., Alqarawi, A.A., John, R., & Egamberdieva, D. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Sciences, 6, 868 DOI: https://doi.org/10.3389/fpls.2015.00868

Ahmad, P., Ozturk, M., & Gucel, S. (2012). Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fresenius Environment Bulletin, 21, 2953–2961

Ashraf, M., & Foolad, M. (2007). Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environment Experimental Botany, 59, 206–216 DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006

Awasthi, K., & Sinha, P. (2013). Nickel stress induced antioxidant defence system in sponge gourd (Luffa cylindrical). Journal of Plant Physiology and Pathology, 1, 1, 2.

Bates, L., Waldren, P.P., & Teare, J.D. (1973). Rapid determination of free proline of water stress studies. Plant Soil, 39, 205–207. DOI: https://doi.org/10.1007/BF00018060

Bauddh, K., & Singh, R. P. (2011). Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. Journal of environmental biology, 32(3), 355.

Chandra, S. P., Puneeth, H. R., Mahadimane, P. V., & Sharada, A. C. (2017). Biochemical Evaluation of Cordiadichotoma Seed Extracts. Advanced Science Letters, 23(3), 1823-1825. DOI: https://doi.org/10.1166/asl.2017.8514

Chandra, S., & Sukumaran, S. (2020). Physiological, Biochemical and Neurochemical responses of Cirrhinus mrigala upon short term exposure to Cerium oxide. International Journal of Aquatic Biology, 7(6), 368-373.

Chen, J., Yan, Z., & Li, X. (2014). Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicology and environmental safety, 104, 349-356. DOI: https://doi.org/10.1016/j.ecoenv.2014.01.022

Cui, Y., & Wang, Q. (2006). Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil and Environment, 52(11), 523. DOI: https://doi.org/10.17221/3542-PSE

Dev, S. (1999). Ancient-modern concordance in Ayurvedic plants: some examples. Environmental Health Perspectives, 107(10), 783-789. DOI: https://doi.org/10.1289/ehp.99107783

El-Beltagi, H. S., Mohamed, A. A., & Rashed, M. M. (2010). Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82. DOI: https://doi.org/10.15835/nsb245395

Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41(2), 281-284. DOI: https://doi.org/10.1023/B:PHOT.0000011962.05991.6c

Foyer, C., Rowell, J., & Walker, D. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157(3), 239-244. DOI: https://doi.org/10.1007/BF00405188

Gajewska, E., Sklodowska, M., Slaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities and chlorophyll contents in wheat shoots. Biologia Plantarum, 50, 653–659 DOI: https://doi.org/10.1007/s10535-006-0102-5

Gao, X. P., Wang, X. F., Lu, Y. F., Zhang, L. Y., Shen, Y. Y., Liang, Z., & Zhang, D. P. (2004). Jasmonic acid is involved in the water‐stress‐induced betaine accumulation in pear leaves. Plant, Cell & Environment, 27(4), 497-507. DOI: https://doi.org/10.1111/j.1365-3040.2004.01167.x

Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., and Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of occupational medicine and toxicology, 1(1), 1-6. DOI: https://doi.org/10.1186/1745-6673-1-22

Grieve, C., & Grattan, S. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil, 70, 303–307. DOI: https://doi.org/10.1007/BF02374789

Haag-Kerwer, A., Schäfer, H. J., Heiss, S., Walter, C., & Rausch, T. (1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50 (341), 1827-1835. DOI: https://doi.org/10.1093/jxb/50.341.1827

Hajar, A.S., Zidan, M.A., & Zahruni, H.S. (1996). Effect of NaCl Stress on the germination, growth activities of black cumin (Nigella sativa L.). Arab Gulf Journal of Scientific Research, 14, 445–454.

Hao, F., Wang, X., & Chen, J. (2006.) Involvement of plasma membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Science, 170, 151–158. DOI: https://doi.org/10.1016/j.plantsci.2005.08.014

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1

Jonak, C., Nakagami, H., & Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant physiology, 136 (2), 3276-3283. DOI: https://doi.org/10.1104/pp.104.045724

Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of biochemistry and biophysics, 186 (1), 189-195. DOI: https://doi.org/10.1016/0003-9861(78)90479-4

Leskó, K., & Simon-Sarkadi, L. (2002). Effect of cadmium stress on amino acid and polyamine content of wheat seedlings`. Periodica Polytechnica Chemical Engineering, 46(1-2), 65-71.

Liu, X., Peng, K., Wang, A., Lian, C., & Shen, Z. (2010). Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78(9), 1136-1141. DOI: https://doi.org/10.1016/j.chemosphere.2009.12.030

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folinphenol reagent. Journal of Biological Chemistry, 193, 265–275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Mahadimane, P. V., & Chandra, S. S. (2020). Analyzing the phytochemical, anti-ulcer, anthelmentic and antioxidant potentials of Tabernaemontana dichotoma Roxb. ex wall seed extracts. Journal of natural remedies, 20(2), 89-95. DOI: https://doi.org/10.18311/jnr/2020/24346

Maheshwari, R., & Dubey, R. S. (2009). Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation, 59(1), 37-49. DOI: https://doi.org/10.1007/s10725-009-9386-8

Minglin, L., Yuxiu, Z., & Tuanyao, C. (2005). Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene, 363, 151-158. DOI: https://doi.org/10.1016/j.gene.2005.07.037

Munns, R. (2005).Genes and salt tolerance: bringing them together. New Phytology, 167,645–663 DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

Nouairi, I., Ammar, W. B., Youssef, N. B., Miled, D. D. B., Ghorbal, M. H., & Zarrouk, M. (2006). Variations in membrane lipid metabolism in Brassica juncea and Brassica napus leaves as a response to cadmium exposure. Journal of Agronomy, 6 (2), 299-307. DOI: https://doi.org/10.3923/ja.2006.299.307

Pallag, A., Pașca, B., Gîtea, D., & Țiț, M. (2014). The effects of acetylsalicylic acid in physiological processes of Triticum aestivum L. Analele Universității din Oradea, Fascicula: Protecția Mediului, 23, 119-124.

Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., & Del Rio, L. A. (2002). Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521–530. DOI: https://doi.org/10.1016/S0981-9428(02)01404-3

Pandey, V.K., & Rajeev, G. (2010). Nickel toxicity effects on growth and metabolism of egg plant. International Journal of Vegetable Science, 16, 351–360. DOI: https://doi.org/10.1080/19315260.2010.483722

Perva, S., Swamy, K., Chandrashekar, N., Subramanian, R., Sukumaran, S., & Chandra S.P.S. (2020). Physio-biochemical responses of Indian major carp Catlacatla upon sub-chronic exposure to tin oxide nanoparticles`. Egyptian Journal of Aquatic Biology and Fisheries, 24(4), 509-520. DOI: https://doi.org/10.21608/ejabf.2020.102144

Piotrowska, A., Bajguz, A., Godlewska-Żyłkiewicz, B., Czerpak, R., & Kamińska, M. (2009). Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environmental and experimental botany, 66(3), 507-513. DOI: https://doi.org/10.1016/j.envexpbot.2009.03.019

Prokopiev, E. (1978). Afforestation of Industrial Areas. Sofia: Zemizdat, 208.

Rajendrakumar, C. S., Suryanarayana, T., & Reddy, A. R. (1997). DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS letters, 410 (2-3), 201-205. DOI: https://doi.org/10.1016/S0014-5793(97)00588-7

Ramon, O., Vazquez, E., Fernandez, M., Felipe, M., & Zornoza, P. (2003).Cadmium stress in white lupine: effects on nodule structure and functioning. Plant Physiology, 161, 911–919. DOI: https://doi.org/10.1016/S0981-9428(03)00136-0

Ranjitha, T., & Sharath Chandra, S. P. (2020). Biological and ecological impact of iron and iron nanoparticles across diverse array of fish models: a review. Ecology, Environment and Conservation, 26(1), 180-184

Rashmi, N., Ranjitha, T., & Sharath Chandra, S. P. (2019). Chromium and their derivatives causes physiological and biochemical modifications in diverse fish models: A Review. Biomedical and Pharmacology journal, 12(04), 2049-2053. DOI: https://doi.org/10.13005/bpj/1838

Rasool, S., Ahmad, A., Siddiqi, T. O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta physiologiae plantarum, 35(4), 1039-1050. DOI: https://doi.org/10.1007/s11738-012-1142-4

Romero‐Puertas, M. C., Palma, J. M., Gómez, M., Del Rio, L. A., & Sandalio, L. M. (2002). Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell & Environment, 25(5), 677-686. DOI: https://doi.org/10.1046/j.1365-3040.2002.00850.x

Sakamoto, A., & Murata, N. (2002). `The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants`. Plant Cell Environment, 25,163–171. DOI: https://doi.org/10.1046/j.0016-8025.2001.00790.x

Salt, D. E., Smith, R.D., & Raskin, I. (1998). Phytoremediation. Annual review of plant physiology and plant molecular biology, 49, 643-668. DOI: https://doi.org/10.1146/annurev.arplant.49.1.643

Schutzendubel, A., & Polle, A. (2002).Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of experimental botany, 53(372), 1351-1365. DOI: https://doi.org/10.1093/jexbot/53.372.1351

Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30(2), 157-161. DOI: https://doi.org/10.1023/A:1006386800974

Seregin, I.V., & Kozhevnikova, A.D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53,257–277 DOI: https://doi.org/10.1134/S1021443706020178

Shanmugaraj, B. M., Chandra, H. M., Srinivasan, B., & Ramalingam, S. (2013). Cadmium induced physio-biochemical and molecular response in Brassica juncea. International journal of phytoremediation, 15(3), 206-218. DOI: https://doi.org/10.1080/15226514.2012.687020

Sharath Chandra, S. P., & Sukumaran, S. (2020). Magnesium chloride impairs physio-biochemical and neurochemical responses in cirrhinusmrigala (Hamilton, 1822) upon short term exposure. Biointerface Research in Applied Chemistry, 10(1), 4934-4938. DOI: https://doi.org/10.33263/BRIAC101.934938

Shekhawat, G. S., Verma, K., Jana, S., Singh, K., Teotia, P., & Prasad, A. (2010). In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma, 239(1), 31-38. DOI: https://doi.org/10.1007/s00709-009-0079-y

Singh, S., Eapen, S., & D’souza, S. F. (2006). Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere, 62(2), 233-246. DOI: https://doi.org/10.1016/j.chemosphere.2005.05.017

Sirhindi, G., Mir, M. A., Abd-Allah, E. F., Ahmad, P., & Gucel, S. (2016). Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Frontiers in plant science, 7, 591. DOI: https://doi.org/10.3389/fpls.2016.00591

Stiborová, M., Ditrichová, M., & Brenzinová, A. (1987). Effect of heavy metalions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biologia Plantarum, 29, 453–467 DOI: https://doi.org/10.1007/BF02882221

Thaler, J. S. (1999). Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environmental Entomology, 28, 30–37. DOI: https://doi.org/10.1093/ee/28.1.30

Velikova V., Yordanov I., & Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59–66. DOI: https://doi.org/10.1016/S0168-9452(99)00197-1

Vitória, A. P., Lea, P. J., & Azevedo, R. A. (2001). Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57(5), 701-710. DOI: https://doi.org/10.1016/S0031-9422(01)00130-3

Zhang, F., Wang, Y., Lou, Z., & Dong, J. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44–50. DOI: https://doi.org/10.1016/j.chemosphere.2006.10.007

Downloads

Published

2022-10-31

How to Cite

Chandra, S. (2022). Aspirin regulates oxidative stress and physio-biochemical attributes in Brassica juncea under cadmium toxicity. Journal of Experimental Biology and Agricultural Sciences, 10(5), 1180–1187. https://doi.org/10.18006/2022.10(5).1180.1187

Issue

Section

RESEARCH ARTICLES

Categories