Growth and development of transgenic peanut (Arachis hypogaea) lines containing chitinase 42 kDa gene from Trichoderma asperellum SH16
DOI:
https://doi.org/10.18006/2022.10(4).789.796Keywords:
Chitinase 42 kDa, Chi42, Growth, SyncodChi42-1, SyncodChi42-2, Transgenic peanut lines, YieldAbstract
Peanut (Arachis hypogaea L.) is vulnerable to many diseases. Vietnam and other regions where peanut is widely cultivated have a high threat of fungal and other plant diseases. Various fungicides are available to control the fungal disease but these have various harmful effects on the natural flora, fauna, and environment. Transgenic peanut lines which possess antifungal activity provide a possible solution in managing fungal diseases apart from the traditional resistance and fungicide usage. Therefore, this study evaluated the probable growth and development of chitinase transgenic peanut lines against Sclerotium rolfsii, a pathogen that causes “southern blight” in plants, under greenhouse conditions. This study provided evidence that through Agrobacterium itumefaciens mediated transformation, 42 kDa chitinase genes from Trichoderma asperellum, which is under the regulation of 35S promoter, were successfully incorporated into the peanut’s (A. hypogaea L.) genome and expressed in their plants. This evidence also demonstrated that transgenic peanut lines were suitable for growing and developing in the greenhouse. Further, it was reported that transgenic peanut lines took approximately 133 to 145 days from planting to maturity. These results also revealed that various growth characteristics of transgenic peanut lines having two synthetic genes (syncod Chi42-2 i.e. S2-2, S2-4, S2-6, and syncod Chi42-1 i.e. S1-1, S1-2, S1-3) were greater than that from the wild-type Chi42 (WT-1, WT-2, and WT-3). In addition, yield-related parameters including the number of mature pods, 100 pods weight and 100 seeds weight for all the transgenic peanut lines were higher than that of the non-transformed plant. Among the transgenic lines, line S2-4 exhibited significantly higher growth and yield than the other transgenic lines. These results demonstrated that 42 kDa chitinase genes overexpressing peanut lines could be a candidate for improvement against plants to phytopathogenic fungus S. rolfsii and high yield.
References
Anuradha, T.S., Divya, K., Jami, S.K., & Kirti, P.B. (2008). Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Reports, 27(11), 1777-1786. DOI: https://doi.org/10.1007/s00299-008-0596-8. DOI: https://doi.org/10.1007/s00299-008-0596-8
Arnoldo, M., Baszczynski, C.L., Bellemare, G., Brown, G., et al. (1992). Evaluation of transgenic canola plants under field conditions. Genome, 35(1), 58-63. DOI: https://doi.org/10.1139/g92-010. DOI: https://doi.org/10.1139/g92-010
Bashir, S., Yaqoob, A., Bashir, R., Bukhari, S., et al. (2022). Barley Chitinase Genes Expression Revamp Resistance Against Whitefly (Bemisia tabaci) in Transgenic Cotton Plants. Research Square preprints. DOI: https://doi.org/10.21203/rs.3.rs-1240481/v1.
Branch, W.D., & Brenneman, T.B. (1999). Stem rot disease evaluation of mass-selected peanut populations. Crop Protection, 18, 127-130. DOI: https://doi.org/10.1016/S0261-2194(98)00103-3. DOI: https://doi.org/10.1016/S0261-2194(98)00103-3
Branch, W.D., & Brenneman, T.B. (2009). Field evaluation for the combination of white mould and tomato spotted wilt disease resistance among peanut genotypes. Crop Protection, 28, 595-598. DOI: https://doi.org/10.1016/j.cropro.2009.03.008. DOI: https://doi.org/10.1016/j.cropro.2009.03.008
Chenault, K.D., Melouk, H.A., & Payton, M.E. (2006). Effect of anti-fungal transgene (s) on agronomic traits of transgenic peanut lines grown under field conditions. Peanut Science, 33(1), 12-19. DOI: https://doi.org/10.3146/0095-3679(2006)33[12:EOATOA] 2.0.CO;2.
Chu, Y., Deng, X.Y., Faustinelli, P., & Ozias-Akins, P. (2008). Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Reports, 27(1), 85-92. DOI: https://doi.org/10.1007/s00299-007-0444-2. DOI: https://doi.org/10.1007/s00299-007-0444-2
Chu, Y., Bhattacharya, A., Wu, C., Knoll, J.E., & Ozias-Akins, P. (2013). Improvement of peanut (Arachis hypogaea L.) transformation efciency and determination of transgene copy number by relative uantitative real-time PCR. In Vitro Cellular & Developmental Biology-Plant, 49(3), 266-275. DOI: https://doi.org/10.1007/s11627-013-9518-8. DOI: https://doi.org/10.1007/s11627-013-9518-8
Cuong, N.L., Toan, H.K., Vu, N.X., & Huyen, T.T. (2019). Growth promotion and yield enhancement efficiency by Bacillus strains for groundnut under field condition in Thua Thien Hue province. Hue University Journal of Science: Agriculture and Rural Development, 128(3C), 13-22. DOI: https://doi.org/ 10.26459/hueuni-jard.v128i3C.5229.
Dapaah, H.K., Mohammed, I., & Awuah, R.T. (2014). Growth yield performance of groundnuts (Arachis hypogaea L.) in response to plant density. International Journal of Plant and Soil Science, 3(9), 1069-1082. DOI: https://doi.org/10.9734/IJPSS/2014/9445
FAOSTAT. (2020). Production Indices. Retrieved from https://www.fao.org/faostat/en/?#data/QI (accessed on May 13, 2022).
Ganesan, M., Bhanumathi, P., Ganesh Kumar, K., Lakshmi Prabha, A., Pill-Soon, S., & Jayabalan, N. (2009). Transgenic Indian cotton (Gossypium hirutum) harboring rice chitinase gene (Chi II) confers resistance to two pathogens. American Journal of Biochemistry and Biotechnology, 5(2), 63-74. DOI: https://doi.org/10.3844/ajbbsp.2009.63.74
Hoa P.T.B., Tue N.H., Huyen, L.T.T., Linh, L.H., Nhan, N.T., et al. (2022a). Over expression of 42 kDa Chitinase Gene from Trichoderma asperellum SH16 in peanut (Arachis hypogaea). Journal of Crop Improvement, DOI: https://doi.org/10.1080/ 15427528.2022.2110346. DOI: https://doi.org/10.1080/15427528.2022.2110346
Hoa, P.T.B., Tue, N.H., Huyen, L.T.T., Linh, L.H., et al. (2022b). Heterologous expression of genes encoding chitinase 42 kDa from Trichoderma asperellum in Arachis hypogaea through Agrobacterium tumefaciens-mediated transformation. Research Square. DOI: https://doi.org/10.21203/rs.3.rs-1487302/v1. DOI: https://doi.org/10.21203/rs.3.rs-1487302/v1
Javaid, A., Ali, A., Shoaib, A., & Khan, I. H. (2021). Alleviating stress of Sclertium rolfsii on growth of chickpea var. Bhakkar-2011 by Trichoderma harzianum and T. viride. The Journal of Animal and Plant Sciences, 31(6), 1755-1761. DOI: 10.36899/ JAPS.2021.6.0378. DOI: https://doi.org/10.36899/JAPS.2021.6.0378
Jeong, J.S., Kim, Y.S., Redillas, M.C., Jang, G., et al. (2013). OsNAC5 over expression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 11(1), 101-114. DOI: https://doi.org/10.1111/pbi.12011. DOI: https://doi.org/10.1111/pbi.12011
Kishimoto, K., Nishizawa, Y., Tabei, Y., Hibi, T., Nakajima, A., & Akutsu, K. (2002). Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing diferent levels of disease resistance to graymold (Botrytis cinerea). Plant Science, 162, 655-662. DOI: https://doi.org/10.1016/S0168-9452(01)00602-1. DOI: https://doi.org/10.1016/S0168-9452(01)00602-1
Kumar, D.P., Anupama, P.D., Singh, R.K., Thenmozhi, R., Nagasathya, A., Thajuddin, N., & Paneerselvam, A. (2012). Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. International Research Journal of Microbiology, 3(2), 060-065.
Lin, W., Anuratha, C.S., Datta, K., Potrykus, I., Muthukrishnan, S., & Datta, S.K. (1995). Genetic engineering of rice for resistance to sheath blight. Nature Biotechnology, 13, 686-691. DOI: https://doi.org/10.1038/nbt0795-686. DOI: https://doi.org/10.1038/nbt0795-686
Livingstone, D.M., Hampton, J.L., Phipps, P.M., & Grabau, E.A. (2005). Enhancing resistance to Sclerotinia minor in peanut by expressing a barely oxalate gene. Plant Physiology, 137(4), 1354-1362. DOI: https://doi.org/10.1104/pp.104.057232. DOI: https://doi.org/10.1104/pp.104.057232
Loc, N.H., Quang, H.T., Hung, N.B., Huy, N.D., Phuong, T.T.B., & Ha, T.T.T. (2011). Trichoderma asperellumChi42 genes encode chitinase. Mycobiology, 39(3), 182-186. DOI: https://dx.doi.org/ 10.5941%2FMYCO.2011.39.3.182. DOI: https://doi.org/10.5941/MYCO.2011.39.3.182
Luong, N.N., Tien, N.Q.D., Huy, N.X., Tue, N.H., et al. (2021). Expression of 42 kDa chitinase of Trichoderma asperellum (Ta-CHI42) from a synthetic gene in Escherichia coli. FEMS Microbiology Letters, 368(16), DOI: fnab110.https://doi.org/ 10.1093/femsle/fnab110. DOI: https://doi.org/10.1093/femsle/fnab110
Mehan, V.K., Mayee, C.D., & McDonald, D. (1994). Management of Sclerotium rolfsii‐caused stem and pod rots of groundnut-a critical review. International Journal of Pest Management, 40, 313-320. DOI: https://doi.org/10.1080/09670879409371906. DOI: https://doi.org/10.1080/09670879409371906
Minh, H.K., & Hieu, N.M. (2012). Study on the effect of sowing time on growth and yield of peanut cultivar L14 in Winter-Spring crop on sandy soil in Quang Binh province. Science and Technology Journal of Agriculture & Rural Development, 10, 12-20.
Nagpure, A., Choudhary, B., & Gupta, R.K. (2014). Chitinases: in agriculture and human healthcare. Critical Reviews in Biotechnology, 34(3), 215-232. DOI: https://doi.org/10.3109/ 07388551.2013.790874. DOI: https://doi.org/10.3109/07388551.2013.790874
Rohini, V.K., & Rao, K.S. (2001). Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Science, 160, 889-898. DOI: https://doi.org/10.1016/S0168-9452(00)00462-3. DOI: https://doi.org/10.1016/S0168-9452(00)00462-3
Sharf, W., Javaid, A., Shoaib, A., & Khan, I. H. (2021). Induction of resistance in chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egyptian Journal of Biological Pest Control, 31(1), 1-11. DOI: https://doi.org/10.1186/s41938-021-00364-y. DOI: https://doi.org/10.1186/s41938-021-00364-y
Sreeramanan, S., Maziah, M., & Xavier, R. (2009). A protocol for Agrobacterium-mediated transformation of banana with a rice chitinase gene. Emirates Journal of Food and Agriculture, 21, 18-33. DOI: https://doi.org/10.9755/ejfa.v21i2.5161. DOI: https://doi.org/10.9755/ejfa.v21i2.5161
Sundaresha, S., Manoj Kumar, A., Rohini, S., Math, S.A., Keshsamma, E., Chadrashekar, S.C., & Udayakumar, M. (2009). Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. European Journal of Plant Pathology, 126(4), 497-508. DOI: https://doi.org/10.1007/s10658-009-9556-6. DOI: https://doi.org/10.1007/s10658-009-9556-6
Takahashi, W., Fujimori, M., Miura, Y., Komatsu, T., Nishizawa, Y., Hibi, T., & Takamizo, T. (2005). Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiforum Lam) expressing the rice chitinase gene. Plant Cell Reports, 23, 811-818. DOI: https://doi.org/10.1007/s00299-004-0900-1. DOI: https://doi.org/10.1007/s00299-004-0900-1
Tue, N. H., Tuong, T.G.C., Trang, P.T.H., Chung, N.D., Hoa, P.T.B., Tien, N.Q.D., & Loc, N.H. (2022). Cloning the root-specific Asy promoter and genes encoding chitinase 42 kDa of Trichoderma asperellum into the plant expression vector. Journal of Applied Biology and Biotechnology, 10(3), 7-1. DOI: 10.7324/JABB.2022.100302. DOI: https://doi.org/10.7324/JABB.2022.100302
Woodward, J.E., Brenneman, T.B., Kemerait, R.C., Smith, N.B., Culbreath, A.K., & Stevenson, K.L. (2008). Use of resistant cultivars and reduced fungicide programs to manage peanut
diseases in irrigated and nonirrigated fields. Plant Disease, 92, 896-902. DOI: https://doi.org/10.1094/PDIS-92-6-0896. DOI: https://doi.org/10.1094/PDIS-92-6-0896
Yang, X., Yang, J., Li, H., Niu, L., et al. (2020). Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean. Transgenic Research, 29(2), 187-198. DOI: https://doi.org/ 10.1007/s11248-020-00190-2. DOI: https://doi.org/10.1007/s11248-020-00190-2
Zaynab, M., Kanwal, S., Hussain, I., Qasim, M., et al. (2017). Rice chitinase gene expression in genetically engineered potato confers resistance against Fusarium solani and Rhizictonia solani. PSM Microbiol, 2(3), 63-73.
Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A., & Lamb, C.J. (1994). Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nature Biotechnology, 12, 807-812. DOI: https://doi.org/10.1038/nbt0894-807. DOI: https://doi.org/10.1038/nbt0894-807
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.