Effectiveness of Quercetin and Its Derivatives Against SARS CoV2 -In silico Approach
DOI:
https://doi.org/10.18006/2022.10(5).1003.1015Keywords:
SARS CoV2, Antivirals, Phytochemical, Binding studies, Quercetin derivativesAbstract
The COVID-19 pandemic that erupted in November 2019 is continuing, with no effective antiviral agent to date. Synthetic antiviral agents have limitations such as a narrow range of therapeutic effectiveness of the activity, toxicity, and resistant viral strains and traditional antiviral medicines at large seem not to have these limitations. Here, some of the existing phytochemicals are cherry-picked for repurposing against the enzyme or protein targets of SARS CoV2, by the principles of structure-based drug design based on molecular docking studies. The most important drug targets of SARS CoV2 namely, Mpro protease (6LU7), RdRp polymerase (7BTF), and Spike glycoprotein of SARS CoV2(6VSB) were employed for docking analysis with chosen phytochemicals and binding affinity was calculated using PRODIGY software and docking sites determined using Chimera software. For docking studies, 160 phytochemicals were selected from a large pool of phytochemicals. Based on the binding affinity values, 61 phytoconstituents were selected for further in-silico screening which resulted in 15 phytochemicals, with higher binding affinity to spike glycoprotein of SARS CoV2. Moreover, Guaijaverin, Quercetin, Quercitrin, Quinic acid, and spiraeoside binds both to the spike glycoprotein of SARS Cov2 and the host receptor of human ACE2. Hence these compounds may serve as two-pronged drug candidates for SARS CoV2. In nutshell, we present a few phytochemical candidates with higher binding affinity to the Spike protein of SARS CoV2, which needs to be further optimized by in vitro studies to minimize the cytotoxicity and increase or retain the binding affinity, towards an effective antiviral drug against COVID 19.
References
Ambrose, J. M., Kullappan, M., Patil, S., Alzahrani, K. J., et al. (2022). Plant-Derived Antiviral Compounds as Potential Entry Inhibitors against Spike Protein of SARS-CoV-2 Wild-Type and Delta Variant: An Integrative in SilicoApproach. Molecules (Basel, Switzerland), 27(6), 1773. 1-26. DOI: https://doi.org/10.3390/molecules27061773
Bachar, S. C., Mazumder, K., Bachar, R., Aktar, A., & Al Mahtab, M. (2021). A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight In to Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Frontiers in pharmacology, 12, 732891. DOI: https://doi.org/10.3389/fphar.2021.732891
Banerjee, P., Eckert, A.O., Schrey, A.K., &Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic acids research, 46(W1), W257-63. DOI: https://doi.org/10.1093/nar/gky318
Cagliani, R., Forni, D., Clerici, M., & Sironi, M. (2020). Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2. Journal of Virology, 16(10), 1678–1685. DOI: https://doi.org/10.1128/JVI.00411-20
Chatterjee, P., Nagi, N., Agarwal, A., Das, B., Banerjee, S., Sarkar, S., & Gangakhedkar, R. R. (2020). The 2019 novel coronavirus disease (COVID-19) pandemic: A review of the current evidence. The Indian journal of medical research, 151(2-3), 147–159. DOI: https://doi.org/10.4103/ijmr.IJMR_519_20
Chiu, N. C., Chi, H., Tai, Y. L., Peng, C. C., et al. (2020). Impact of wearing masks, hand hygiene, and social distancing on influenza, enterovirus, and all-cause pneumonia during the coronavirus pandemic: retrospective national epidemiological surveillance study. Journal of medical Internet research, 22(8), e21257. DOI: https://doi.org/10.2196/21257
Daina, A., Michielin, O., & Zoete, V. (2017). Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717 DOI: https://doi.org/10.1038/srep42717
Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines & Immunotherapeutics, 16(6): 1232–1238. DOI: https://doi.org/10.1080/21645515.2020.1735227
Domitrović, R., & Potočnjak, I. (2016). A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Archives of Toxicology, 90(1), 39-79. DOI: https://doi.org/10.1007/s00204-015-1580-z
Fahmi, M., Kubota, Y., & Ito, M. (2020). Nonstructural proteins NS7b and NS8 are likely to be phylogenetically associated with evolution of 2019-nCoV. Infection, Genetics and Evolution, 81, 104272. DOI: https://doi.org/10.1016/j.meegid.2020.104272
Hussain, M., Jabeen, N., Amanullah, A., Baig, A. A., Aziz, B., Shabbir, S., Raza, F., & Uddin, N. (2020). Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: conformation and intermolecular interactions. AIMS microbiology, 6(3), 350–360. DOI: https://doi.org/10.3934/microbiol.2020021
Idrees, M., Khan, S., Memon, N. H., & Zhang, Z. (2021). Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review. Current Pharmaceutical Biotechnology, 22(4), 444-450. DOI: https://doi.org/10.2174/1389201021666200703201458
Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature microbiology, 5(4), 562-569 DOI: https://doi.org/10.1038/s41564-020-0688-y
Lin, L.T., Hsu, W.C., & Lin, C.C. (2014) Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24-35. DOI: https://doi.org/10.4103/2225-4110.124335
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., & Bi, Y. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. DOI: https://doi.org/10.1016/S0140-6736(20)30251-8
Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and biophysical research communications, 526(1):165-169. DOI: https://doi.org/10.1016/j.bbrc.2020.03.047
Luk, H. K., Li, X., Fung, J., Lau, S. K., & Woo, P. C. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution, 71, 21–30. DOI: https://doi.org/10.1016/j.meegid.2019.03.001
Ma, L. L., Ge, M., Wang, H. Q., Yin, J. Q., Jiang, J. D., & Li, Y. H. (2015). Antiviral activities of several oral traditional Chinese medicines against influenza viruses. Evidence-Based Complementary and Alternative Medicine, 2015, 367250. https://doi.org/10.1155/2015/367250. DOI: https://doi.org/10.1155/2015/367250
Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus research, 131(2), 111-120. DOI: https://doi.org/10.1016/j.virusres.2007.09.008
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of cheminformatics, 3(1), 1-14. DOI: https://doi.org/10.1186/1758-2946-3-33
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612. DOI: https://doi.org/10.1002/jcc.20084
Pushpa, R., Nishant, R., Navin, K., & Pankaj, G. (2013). Antiviral Potential of Medicinal Plants- An Overview. International Research Journal of Pharmacy, 4 (6), 8-16 DOI: https://doi.org/10.7897/2230-8407.04603
Romano, M., Ruggiero, A., Squeglia, F., Maga, G., & Berisio, R. (2020). A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 9(5):1267. DOI: https://doi.org/10.3390/cells9051267
Sharma, A., Goyal, S., Yadav, A. K., Kumar, P., & Gupta, L. (2022). In-silico screening of plant-derived antivirals against main protease, 3CLpro and endoribonuclease, NSP15 proteins of SARS-CoV-2. Journal of biomolecular structure & dynamics, 40(1), 86–100. DOI: https://doi.org/10.1080/07391102.2020.1808077
Sharma, A., Tiwari, S., Deb, M.K., & Marty, J.L. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. International Journal of Antimicrobial Agents, 56(2):106054. DOI: https://doi.org/10.1016/j.ijantimicag.2020.106054
Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–46. DOI: https://doi.org/10.1002/jcc.21334
V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155-70. DOI: https://doi.org/10.1038/s41579-020-00468-6
Vardhan, S., & Sahoo, S.K. (2020). In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in biology and medicine, 124(103936), 1-12. DOI: https://doi.org/10.1016/j.compbiomed.2020.103936
Xue, L.C., Rodrigues, J.P., Kastritis, P.L., Bonvin, A.M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 32(23), 3676-8. DOI: https://doi.org/10.1093/bioinformatics/btw514
Yuan, M., Wu, N.C., Zhu, X., Lee, C.C., et al. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science, 368(6491):630-633. DOI: https://doi.org/10.1126/science.abb7269
Zheng, J. (2020). SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. International Journal of Biological Sciences, 16(10), 1678. DOI: https://doi.org/10.7150/ijbs.45053
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.