In Silico Targeting of influenza virus haemagglutinin receptor protein using Diosmetin, Tangeritin, and Anthocyanidins as potential drugs

Authors

  • Poonam Bansal Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India
  • Hardeep Singh Tuli Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India
  • Adesh K Saini Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India
  • Reena V Saini Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India
  • Kuldeep Dhama Division of Pathology, ICAR-Indian Veterinary Research Institute, 243122, Bareilly, Uttar Pradesh, India
  • Ranjan K Mohapatra Department of Chemistry, Government College of Engineering, Keonjhar-758002, Odisha, India
  • Deepak Chandran Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India – 642109
  • Vivek Kumar Garg Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, 140413, Gharuan, Punjab, India
  • Amit Vashishth Department of Science and Humanities, SRM Institute of Science & Technology, Delhi-NCR, Ghaziabad, 201204, UP, India
  • Gurpreet Kaur Bhatia Department of Physics, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India
  • Neelam Goel Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh-160014, India

DOI:

https://doi.org/10.18006/2022.10(5).995.1002

Keywords:

Influenza, Haemeagglutinin, Phytochemicals, Molecular docking, Drug discovery

Abstract

Influenza viruses cause acute respiratory illnesses in birds, humans, and other mammals, and are a major public health concern around the world. Pandemic flu could be caused by an unforeseen human adaptation of an influenza subtype or strain rather than currently circulating influenza viruses. The need for plant metabolites-based new anti-influenza drugs appears to be urgent. Blocking Haemeagglutinin (HA) protein is one of the most appealing drug targets to halt the growth of the virus. The influenza virus can acquire resistance to currently existing therapies, therefore necessitating the development of new medications. The plant's bioactive metabolites, flavanoids are having potential medicinal efficacy. The current study aimed to identify certain flavonoids (Diosmetin, Tangeritin, and Anthocyanidins) that might interact with the HA protein of the influenza virus and help in inhibiting its growth. We used PyRx v0.8 for virtual screening and docking studies. The highest binding affinity docked structures were analyzed using PyMOL and Discovery Studio Visualizer. The present study revealed that these naturally occurring compounds interacted with HA protein, resulting in the minimization of energy in the range of -5.2 to -7.0 kcal/mol. Diosmetin showed the best binding affinity of -7.0Kcal/mol. The molecular binding studies revealed that Diosmetin, Tangeritin, and Anthocyanidins are potential compounds to test against HA protein and can be used to develop effective anti-influenza agents.

References

Abdullahi, M., Uzairu, A., Shallangwa, G. A., Mamza, P. A., & Ibrahim, M. T. (2022a). Computational modelling studies of some 1, 3-thiazine derivatives as anti-influenza inhibitors targeting H1N1 neuraminidase via 2D-QSAR, 3D-QSAR, molecular docking, and ADMET predictions. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-22. DOI: https://doi.org/10.1186/s43088-022-00280-6

Abdullahi, M., Uzairu, A., Shallangwa, G. A., Mamza, P. A., & Ibrahim, M. T. (2022b). In-silico modelling studies of 5-benzyl-4-thiazolinone derivatives as influenza neuraminidase inhibitors via 2D-QSAR, 3D-QSAR, molecular docking, and ADMET predictions. Heliyon, 8(8), e10101. DOI: https://doi.org/10.1016/j.heliyon.2022.e10101

Behera, D. K., Behera, P. M., Acharya, L., Dixit, A., & Padhi, P. (2012). In silico biology of H1N1: molecular modelling of novel receptors and docking studies of inhibitors to reveal new insight in flu treatment. Journal of biomedicine & biotechnology, 2012, 714623. https://doi.org/10.1155/2012/714623 DOI: https://doi.org/10.1155/2012/714623

Bonilla-Aldana, D. K., Aguirre-Florez, M., Villamizar-Peña, R., Gutiérrez-Ocampo, et al. (2020). After SARS-CoV-2, will H5N6 and other influenza viruses follow the pandemic path?. Le infezioni in medicina, 28(4), 475-485.

Bui, T. Q., Hai, N., Van Chen, T., Quy, P. T., et al. (2022). Theoretical study on inhibitability of some natural alkaloids against influenza virus hemagglutinin and SARS‐CoV‐2 main protease. Vietnam Journal of Chemistry, 60(4), 502–517. https://doi.org/10.1002/vjch.202100175

Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature, 371(6492), 37–43. DOI: https://doi.org/10.1038/371037a0

Chavan, R.D., Shinde, P., Girkar, K., Madage, R. & Chowdhary, A. (2016) Assessment of Anti-Influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Pharmacognosy Research, 8(2), 105–111. DOI: https://doi.org/10.4103/0974-8490.172562

Chavan, R.D., Shinde, P., Girkar, K., Mandage, R. & Chowdhary, A. (2014) Identification of potent natural inhibitors against H1N1/A/2009 virus using in silicosubtractive genomics approach and docking technology. International Journal of Pharmaceutical Research, 6(3), 105–113.

Das, K. (2012) Antivirals targeting influenza a virus. Journal of Medicinal Chemistry, 55(14), 6263–6277. DOI: https://doi.org/10.1021/jm300455c

Dhama, K., Chakraborty, S., Tiwari, R., Kumar, A., et al. (2013) Avian/bird flu virus: Poultry pathogen having zoonotic and pandemic threats: A review. Journal of Medical Sciences, 13(5), 301–315. DOI: https://doi.org/10.3923/jms.2013.301.315

Dhama, K., Verma, A.K., Rajagunalan, S., Deb, R., et al. (2012) Swine flu is back again: A review. Pakistan Journal of Biological Sciences, 15(21), 1001–1009. DOI: https://doi.org/10.3923/pjbs.2012.1001.1009

Du, R., Cheng, H., Cui, Q., Peet, N.P., Gaisina, I.N. & Rong, L. (2021) Identification of a novel inhibitor targeting influenza A virus group 2 hemagglutinins. Antiviral Research, 186, 105013. DOI: https://doi.org/10.1016/j.antiviral.2021.105013

Hariyono, P., Kotta, J. C., Adhipandito, C. F., Aprilianto, E., Candaya, E. J., Wahab, H. A., & Hariono, M. (2021). A study on catalytic and non-catalytic sites of H5N1 and H1N1 neuraminidase as the target for chalcone inhibitors. Applied biological chemistry, 64(1), 1-17. DOI: https://doi.org/10.1186/s13765-021-00639-w

He, W., Han, H., Wang, W. & Gao, B. (2011) Anti-influenza virus effect of aqueous extracts from dandelion. Virology Journal, 8, 538. DOI: https://doi.org/10.1186/1743-422X-8-538

Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S. & Shekhar, V. (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC bioinformatics, 13 (Suppl 17), 1-13. DOI: https://doi.org/10.1186/1471-2105-13-S17-S7

Joseph, U., Su, Y.C.F., Vijaykrishna, D. & Smith, G.J.D. (2017) The ecology and adaptive evolution of influenza A interspecies transmission. Influenza and other respiratory viruses, 11(1), 74–84. DOI: https://doi.org/10.1111/irv.12412

Kapoor, S. & Dhama, K. Eds. (2014) Insight into influenza viruses of animals and humans. Springer Cham. DOI: https://doi.org/10.1007/978-3-319-05512-1

Kessler, S., Harder, T. C., Schwemmle, M., & Ciminski, K. (2021). Influenza A Viruses and Zoonotic Events—Are We Creating Our Own Reservoirs?. Viruses, 13(11), 2250. DOI: https://doi.org/10.3390/v13112250

Khan, J., Masood, A., Noor, A., Munir, A., & Qadir, M. I. (2017). Molecular Docking studies on possible Neuraminidase Inhibitors of Influenza Virus. Annals of Antivirals and Antiretrovirals, 1(1), 005-007. DOI: https://doi.org/10.17352/aaa.000002

Lao, J. & Vanet, A. (2017). A new strategy to reduce influenza escape: Detecting therapeutic targets constituted of invariance groups. Viruses, 9(3), 38. DOI: https://doi.org/10.3390/v9030038

Lipinski C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug discovery today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 DOI: https://doi.org/10.1016/j.ddtec.2004.11.007

Liu, Z., Zhao, J., Li, W., Wang, X., Xu, J., Xie, J., Tao, K., Shen, L., & Zhang, R. (2015). Molecular docking of potential inhibitors for influenza H7N9. Computational and mathematical methods in medicine, 2015, 480764. https://doi.org/10.1155/2015/480764 DOI: https://doi.org/10.1155/2015/480764

Liu, J., Zu, M., Chen, K., Gao, L., Min, H., Zhuo, W., Chen, W. & Liu, A. (2018) Screening of neuraminidase inhibitory activities of some medicinal plants traditionally used in Lingnan Chinese medicines. BMC Complementary and Alternative Medicine, 18(1), 102. DOI: https://doi.org/10.1186/s12906-018-2173-1

Makau, J. N., Watanabe, K., Ishikawa, T., Mizuta, S., Hamada, T., Kobayashi, N., & Nishida, N. (2017). Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches. PLoS One, 12(3), e0173582. DOI: https://doi.org/10.1371/journal.pone.0173582

Mtambo, S. E., & Kumalo, H. M. (2022). In Silico Drug Repurposing of FDA-Approved Drugs Highlighting Promacta as a Potential Inhibitor of H7N9 Influenza Virus. Molecules (Basel, Switzerland), 27(14), 4515. https://doi.org/10.3390/molecules27144515. DOI: https://doi.org/10.3390/molecules27144515

O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T. & Hutchison, G.R. (2011) Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3(10), 33. DOI: https://doi.org/10.1186/1758-2946-3-33

Patil, D., Roy, S., Dahake, R., Rajopadhye, S., Kothari, S., Deshmukh, R. & Chowdhary, A. (2013) Evaluation of Jatropha curcas Linn. leaf extracts for its cytotoxicity and potential to inhibit hemagglutinin protein of influenza virus. Indian Journal of Virology, 24(2), 220–226. DOI: https://doi.org/10.1007/s13337-013-0154-z

Philippon, D.A.M., Wu, P., Cowling, B.J. & Lau, E.H.Y. (2020) Avian influenza human infections at the human-animal interface. Journal of Infectious Diseases, 222(4), 528–537. DOI: https://doi.org/10.1093/infdis/jiaa105

Sadati, S. M., Gheibi, N., Ranjbar, S., & Hashemzadeh, M. S. (2019). Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomedical reports, 10(1), 33-38. DOI: https://doi.org/10.3892/br.2018.1173

Skariyachan, S., Gopal, D., Chakrabarti, S., Kempanna, P., Uttarkar, A., Muddebihalkar, A. G., & Niranjan, V. (2020). Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies-deciphering the scope of repurposed drugs. Computers in biology and medicine, 126, 104054. DOI: https://doi.org/10.1016/j.compbiomed.2020.104054

Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C. & Wilson, I.A. (2006) Structure and receptor specificity of the

hemagglutinin from an H5N1 influenza virus. Science, 312(5772), 404–410. DOI: https://doi.org/10.1126/science.1124513

Wilson, I.A., Skehel, J.J. & Wiley, D.C. (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature, 289(5796), 366–373. DOI: https://doi.org/10.1038/289366a0

Wu, X., Wu, X., Sun, Q., Zhang, C., Yang, S., Li, L., & Jia, Z. (2017). Progress of small molecular inhibitors in the development of anti-influenza virus agents. Theranostics, 7(4), 826–845. https://doi.org/10.7150/thno.17071. DOI: https://doi.org/10.7150/thno.17071

Yang, J., Li, M., Shen, X. & Liu, S. (2013) Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses, 5(1), 352–373. DOI: https://doi.org/10.3390/v5010352

Yeo, J. Y., & Gan, S. K. E. (2021). Peering into avian influenza a (H5N8) for a framework towards pandemic preparedness. Viruses, 13(11), 2276. DOI: https://doi.org/10.3390/v13112276

Downloads

Published

2022-10-31

How to Cite

Bansal, P., Tuli, H. S., Saini, A. K., Saini, R. V., Dhama, K., Mohapatra, R. K., Chandran, D., Garg, V. K., Vashishth, A., Bhatia, G. K., & Goel, N. (2022). In Silico Targeting of influenza virus haemagglutinin receptor protein using Diosmetin, Tangeritin, and Anthocyanidins as potential drugs. Journal of Experimental Biology and Agricultural Sciences, 10(5), 995–1002. https://doi.org/10.18006/2022.10(5).995.1002

Issue

Section

RESEARCH ARTICLES

Categories