PERFORMANCE ASSESSMENT OF CROSSES BETWEEN GADAM AND HARDCORE TANNIN SORGHUM IN HYBRID LINES PRODUCTION

Authors

  • Cecilia A. Shinda Department of Agricultural Resource Management, University of Embu, Kenya
  • Josiah N. Gitari Department of Agricultural Resource Management, University of Embu, Kenya
  • Paul N. Nthakanio Department of Agricultural Resource Management, University of Embu, Kenya
  • Steven Runo Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
  • Bernard Gichimu Department of Agricultural Resource Management, University of Embu, Kenya
  • Samuel Maina Department of Biological Sciences, University of Embu, Kenya

DOI:

https://doi.org/10.18006/2021.9(4).417.431

Keywords:

Compatibility, F1 hybrid lines, Gadam sorghum, Heterosis, Maternal influence

Abstract

Gadam cultivar of sorghum has been characterized by low yields compared to the international yield levels of sorghum. In this research, Gadam was crossed with Serena, Seredo, and Kari/Mtama-1 in an attempt to increase yield through heterosis. The objective of this study was to determine the level of compatibility and heterosis in crosses between Gadam and the three sorghum lines in a reciprocal crossing. Gadam was crossed with the three lines and their reciprocals to make six treatments that were subjected to compatibility and heterosis tests. The F1 hybrid lines and their parental controls were sown in a randomized complete block design in three replicates. Compatibility and heterosis data variances were analyzed using R statistical software. The cross between Gadam x Serena, Serena x Gadam and the parent Gadam exhibited moderate mean plant height ranging from 99.5 cm to 120.5 cm. The cross Gadam x Serena recorded a desirable negative mid-parent heterosis of -19.89 and -16.16 for plant height and days to maturity respectively. All F1 hybrids recorded positive mid-parent heterosis for the panicle length, the number of reproductive tillers, a thousand seed weight, and the number of tillers per plant. The crosses Gadam x Seredo, Seredo x Gadam, Gadam x Serena and Kari/Mtama-1 x Gadam recorded significantly lower grain filling percentages compared to their parents. In conclusion, the F1 hybrids differed significantly from their reciprocal crosses especially in days of heading, flowering, and maturity indicating a significant maternal influence in these traits. Also, the mid-parent and better parent heterosis had a nonsignificant difference in quantitative traits assessed except for the plant height and grain filling percentage.

References

Abraha MT, Shimelis HA, Laing MD, Assefa K (2017) Selection of drought-tolerant tef (Eragrostis tef) genotypes using drought tolerance indices. South African Journal of Plant and Soil 34(4): 291–300. https://doi.org/10.1080/02571862.2017.1300696.

Adams CB, Erickson JE, Campbell DN, Singh MP, Rebolledo JP (2015) Effects of row spacing and population density on yield of sweet sorghum: Applications for harvesting asbillets. Agronomy Journal 107(5): 1831–1836. https://doi.org/10.2134/agronj14.0295.

Akosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. African Journal of Biotechnology10(19): 3659 - 3670. https://doi.org/10.5897/AJB10.1530.

Ali MA, Abbas A, Awan SI, Jabran K, Gardezi SDA (2011) Correlated response of variousmorpho-physiological characters with grain yield in sorghum landraces at different growth phases. Journal of Animal and Plant Science 21(4): 671–679. http://thejaps.org.pk/docs/21-4/30.pdf.

Amare K, Zeleke H, Bultosa G (2015) Variability for yield, yield-related traits and association among traits of sorghum (Sorghum bicolor (L.) Moench) varieties in Wollo, Ethiopia. Journal of Plant Breeding and Crop Science7(5): 125–133. https://doi.org/10.5897/ JPBCS2014.0469.

Amelework BA, Shimelis HA, Tongoona P, Mengistu F, Laing MD, Ayele DG (2016) Sorghum production systems and constraints, and coping strategies under drought-prone agro-ecologies of Ethiopia. South African Journal of Plant and Soil 33(3):207–217. https://doi.org/10.1080/02571862.2016.1143043.

Aruna C, Cheruku D (2019) Genetic Improvement of Grain Sorghum. In: Aruna C, Visarada KBRS, Bhat BV, Tonapi VA (Eds) Breeding sorghum for diverse end uses. Woodhead Publishing, Cambridge, UK 157–173. https://doi.org/10.1016/ B978-0-08-101879-8.00010-3.

Aruna C, Visarada K (2019) Sorghum Grain in Food and Brewing Industry. In Breeding Sorghum for Diverse End Uses, Elsevier publication Pp. 209–228. https://doi.org/10.1016/B978-0-08-101879-8.00013-9.

Ashok Kumar A, Ciampitti I, Prasad V (2019) Sorghum Hybrids Development for Important Traits: Progress and Way Forward. Agronomy Monographs 58: 97–117. https://doi.org/10.2134/ agronmonogr58.2014.0059.

Bean BW, Baumhardt RL, McCollum FT, McCuistion KC (2013) Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Research 142:20–26. https://doi.org/10.1016/j.fcr.2012.11.014.

Burrow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding 28(3): 391–402. https://doi.org/ 10.1007/s11032-010-9491-4.

Bonin CL, Heaton EA, Cogdill TJ, Moore KJ (2016) Management of sweet sorghum for biomass production. Sugar Tech18(2): 150–159. https://doi.org/10.1007/s12355-015-0377-y.

Calone R, Sanoubar R, Lambertini C, Speranza M, Vittori AL, Vianello G, Barbanti L (2020) Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants 9(5): 561. https://doi.org/10.3390/plants 9050561.

Casto AL, Mattison AJ, Olson SN, Thakran M, Rooney WL, Mullet JE (2019) Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering. Plos One 14(4): e0212154. https://doi.org/10.1371/journal.pone.0212154.

Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Gruis DF, Obukosia S, Wambugu F, Albertsen MC (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proceedings of the National Academy of Sciences113(39):11040–11045. https://doi.org/ 10.1073/pnas.1605689113.

Chen J, Cao F, Shan S, Yin X, Huang M, Zou Y (2019) Grain filling of early season rice cultivars grown under mechanical transplanting. Plos One 14(11): e0224935. https://doi.org/10.1371/ journal.pone.0224935.

Chikuta S, Odong TL, Kabi F, Rubaihayo P, BomBom A, Okori P, Gibson P, Rubaihayo P, Kiryowa M, Ddamulira G (2017) Combining ability and heterosis of selected grain andforage dual-purpose sorghum genotypes. Journal of Agricultural Science 9(2): 122–130. https://doi.org/10.5539/ jas.v9n2p122.

Crozier D, Jr LH, Klein PE, Klein RR, Rooney L, Crozier D (2020) Predicting heterosis in grain sorghum hybrids using sequence-based genetic similarity estimates. Journal of Crop Improvement 34(5): 600–617. https://doi.org/10.1080/ 15427528.2020.1748152.

De Mendibru FA (2019) Statistical procedures for agricultural research. R package version 4.0-3. Available at: https://cran.r-project.org/package=agricolae, accessed on 01 April 2019.

De Mey Y, Demont M, Diagne M (2012) Estimating Bird Damage to Rice in Africa: Evidence from the Senegal River Valley. Journal of Agricultural Economics63(1):175–200. https://doi.org/10.1111/ j.1477-9552.2011.00323.x.

Dykes L (2019) Tannin analysis in sorghum grains. Sorghum Methods and Protocols1931:109–120. https://doi.org/10.1007/978-1-4939-9039-9_8.

Esipisu I (2011) Gadam sorghum in semi-arid Eastern Kenya. In Sorghum Proving Popular with Kenyan Farmers. Available at Http://ipsnews.net/news.asp?idnews=55737. Accessed January 2016.

FAOSTAT (2019) Food and agriculture data, 2019. Available at https://www.fao.org/faostat/, accessed on 10 April 2019.

FAOSTAT, FAO (2017) Food and agriculture data. Food and Agriculture Organization: Roma, Italy. http://www.fao.org/ faostat/en/#data/QC.

Grossenbacher DL, Brandvain Y, Auld JR, Burd M, Cheptou PO, Conner JK, Grant AG, HovickSM, Pannell JR, Pauw A, Petanidou T, Randle AM, Rubio de Casas R, Vamosi J, Winn A, Igic B, Busch JW, Kalisz S, Goldberg EE (2017) Self-compatibility is over-represented on islands. New Phytologist215(1), 469–478. https://doi.org/10.1111/nph.14534.

Hadebe ST, Modi AT, Mabhaudhi T (2017) Drought Tolerance and Water Use of Cereal Crops: A Focus on Sorghum as a Food Security Crop in Sub-Saharan Africa. Journal of Agronomy and Crop Science 203(3): 177–191. https://doi.org/10.1111/jac.12191.

Hanway JJ, Olson RA (2012) Phosphate nutrition of corn, sorghum, soybeans, and small grains. In The role of phosphorus in agriculture. Wiley Online Library Pp. 681–692. https://doi.org/10.2134/1980.roleofphosphorus.c25.

Hettyey A, Hegyi G, Puurtinen M, Hoi H, Torok J, Penn DJ (2010) Mate choice for genetic benefits: time to put the pieces together. Ethology 116(1): 1–9. https://doi.org/10.1111/j.1439-0310.2009.01704.x.

Higgins RH, Thurber CS, Assaranurak I, Brown PJ (2014) Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. G3: Genes, Genome, Genetics 4(9): 1593–1602. https://doi.org/10.1534/g3.114.013318.

Jadhav RR, Deshmukh DT (2017) Heterosis and Combining Ability Studies in Sorghum (Sorghum bicolor L.Moench) Over the Environments. International Journal of Current Microbiology and Applied Sciences 6(10): 3058–3064. https://doi.org/10.20546/ ijcmas.2017.610. 360.

Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Science 51(4): 1444–1457. https://doi.org/10.2135/cropsci2010.06.0326.

Kante M, Rattunde F, Nebie B, Sissoko I, Diallo B, Diallo A, Toure A, Weltzien E, Haussmann BIG, Leiser WL (2019) Sorghum hybrids for low-input farming systems in West Africa: Quantitative genetic parameters to guide hybrid breeding. Crop Science 59(6): 2544–2561. https:// doi.org/10.2135/cropsci2019.03.0172.

Kassambara A (2018) ggpubr: ‘ggplot2’Based Publication Ready Plots. R package version 0.1.8, R Foundation for Statistical Computing, Vienna, Austria. Retrieved on 12 September 2020.

Kavoi J, Kisilu R, Kamau G, Wafula J, Njangungi N, Nganga T (2013) Gadam Sorghum production and marketing through a Public-Private Partnership in Eastern Kenya, KARI Nairobi, Kenya. January, 39. https://www.researchgate.net/publication/270516442.

Kim YJ, Silva J, Zhang D, Shi J, Joo SC, Jang MG, Kwon WS, Yang DC (2016) Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. Plant Cell Reports 35(4): 779–790. https://doi.org/10.1007/s00299-015-1920-8.

Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Elthon T, Bean S, Ioerger BP, Tille M (2012) Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnology Journal 10(5): 533–544. https://doi.org/10.1111/ j.1467-7652.2012.00685.x

Leducq JB, Gosset CC, Poiret M, Hendoux F, Vekemans X, Billiard S (2010) An experimental study of the S-Allee effect in the self-incompatible plant Biscutella neustriaca. Conservation Genetics 11(2): 497–508. https://doi.org/10.1007/s10592-010-0055-2.

Mabelebele M, Siwela M, Gous RM, Iji PA (2015) Chemical composition and nutritive value of South African sorghum varieties as feed for broiler chickens. South African Journal of Animal Science 45(2): 206–213. https://doi.org/10.4314/sajas.v45i2.12.

Liao Z, Yu H, Duan J, Yuan K, Yu C, Meng X, Kou L, Chen M, Jing Y, Liu G (2019) SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature communications 10(1): 1–9. https://www.nature.com/articles/s41467-019-10667-2.

Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mild gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum 54(4): 647–652. https://doi.org/10.1007/s10535-010-0115-y.

Maluk MD, Ngugi K, Olubayo F, Manyasa E, Muthomi J, Nzuve F, Ochanda N (2019) Combining Ability for Earliness and Yield among South Sudanese F1 Sorghum Genotypes. Research journali’s Journal of Agriculture 6(3): 1–13. http://oar.icrisat.org/11749/1/Combining_Ability_for_Earliness__and_Yield_Among_South_Sudanese_F1_Sorghum_genotypes.pdf.

Massel K, Campbell BC, Mace ES, Tai S, Tao Y, Worland BG, Jordan DR, Botella JR, Godwin ID (2016) Whole-genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor. Frontiers in Plant Science 7: 1544. https://doi.org/10.3389/fpls.2016.01544.

Maw MJW, Houx JH, Fritschi FB (2019) Nitrogen content and use efficiency of sweet sorghum grown in the lower Midwest. Agronomy Journal 111(6): 2920–2928. https://doi.org/10.2134/ agronj2018.08.0489.

McKinley B, Rooney W, Wilkerson C, Mullet J (2016) Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during the development of Sorghum bicolor. The Plant Journal 88(4): 662–680. https://doi.org/10.1111/tpj.13269.

Micheni AN, Karuma AN, Gicheru PT (2018) Growth, Production, Potentials and Compatibility of Maize-Bean Intercrops: Results from On-Station Trials in Embu, Kenya. Advanced Agricultural Research & Technology Journal, II(2): 213–219. https://isasat.org/vol-ii-issue-ii-july-2018/16_AARJ_II_2_Micheni et al_213-219.pdf.

Madić M, Djurović D, Knezevic D, Paunović A (2014) Combining abilities for spike traits in a diallel cross of barley. Journal of Central and European Agriculture 15(1): 108–116. https://doi.org/10.5513/JCEA01/15.1.1419.

Mindaye TT, Mace ES, Godwin ID, Jordan DR (2016) Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. Crop Journal 4(6): 479–489. https://doi.org/10.1016/j.cj.2016.06.020.

Mizuta Y, Harushima Y, Kurata N (2010) Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proceedings of the National Academy of Sciencesof the United States of America 107(47): 20417–20422. https://doi.org/10.1073/ pnas.1003124107.

Mofokeng MA, Shargie NG (2016) Bird damage and control strategies in grain sorghumproduction. International Journal of Agricultural and Environmental Research 2(4): 264–269. https://www.researchgate.net/profile/Maletsema_Mofokeng2/publication/312159416.

Mohammed R, Are AK, Bhavanasi R, Munghate RS, Kavi Kishor PB, Sharma HC (2015) Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor. Frontiers in Plant Science 6(11): 945. https://doi.org/10.3389/fpls.2015.00945.

Mohammed R, Kumar A, Rajendra A, Gaddameedi A, Kishor K, Bilhan P, Sharma HC (2018) Pattern of genetic inheritance of morphological and agronomic traits of sorghum associated with resistance to sorghum shoot fly, Atherigona soccata. Euphytica. https://doi.org/10.1007/s10681-018-2111-9.

Munyao JK, Gathaara MH, Micheni AN (2019) Effects of conservation tillage on maize (Zea mays L.) and beans (Phaseolus vulgaris L.) chlorophyll, sugars and yields in Humic Nitisols soils of Embu County, Kenya. African Journal of Agricultural Research 14(29): 1272–1278. https://doi.org/10.5897/AJAR2019.14086.

Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudo response regulatorprotein 37(PRR37) controls photoperiodic flowering in sorghum. Proceedings of the National Academy of Sciences108(39): 16469–16474. https://doi.org/10.1073/pnas.1106212108.

Mutisya DL, Karanja DR, Kisilu RK, Mutisya DL, Karanja DR, Economic RKK, Mutisya DL, Karanja DR, Kisilu RK (2016) Economic advantage of sorghum harvest at soft dough grain stage to prevent bird damage Economic advantage of sorghum harvest at soft dough grain stage to prevent bird damage. Cogent Food & Agriculture 64(1): 1259141 https://doi.org/10.1080/ 23311932.2016.1259141.

Muui C, Muasya RM, Kirubi DT (2013) Baseline survey on factors affecting sorghum production and use in eastern Kenya. African Journal of Food, Agriculture, Nutrition and Development 13(01): 7339–7342. https://doi.org/10.18697/ajfand.56.11545.

Mwadalu R, Mwangi M (2013) The potential role of sorghum in enhancing food security insemi-arid eastern Kenya: A review. Journal of Applied Biosciences 71(1):5786. https://doi.org/10.4314/jab.v71i1.98826.

Ngugi K, Maswili R (2011) Phenotypic diversity in sorghum landraces from Kenya. African Crop Science Journal 18(4): 165–173. https://doi.org/10.4314/acsj.v18i4.68644.

Ochieng L, Mathenge P, Muasya R (2011) A survey of on-farm seed production practices of sorghum (Sorghum bicolor L. Moench) in Bomet District of Kenya. African Journal of Food, Agriculture, Nutrition and Development 11(5): 5232–5253. https://doi.org/10.4314/ajfand.v11i5.70448.

Ohadi S, Hodnett G, Rooney W, Bagavathiannan M (2017) Gene Flow and its Consequences in Sorghum spp. Critical Reviews in Plant Sciences 36(5–6): 367–385. https://doi.org/10.1080/ 07352689.2018.1446813.

Omondi EGO, Makobe MN, Onyango CA, Matasyoh LG, Imbuga MO, Kahangi EN (2012) Nutritional evaluation of mutants and somaclonal variants of sorghum. Scientific Conference Proceedings 5(12): 577–587. http://www.elearning.jkuat.ac.ke/.

Ouyang Y, Liu YG, Zhang G (2010) Hybrid sterility in plant: stories from rice. Current Opinion in Plant Biology 13(2): 186–192. https://doi.org/10.1016/j.pbi.2010.01.002

Prażak R (2016) Prospects for Sorghum cultivation in Poland. Acta Agrobatanica 1–8. https://doi.org/10.5586/aa.1661.

R Development Core Team (2015) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.r-project.org, accessed on 01 April 2019.

Ratna M, Begum S, Husna A, Dey S, Hossain M (2015) Correlation and path coefficients analyses in basmati rice. Bangladesh Journal of Agricultural Research 40: 153–161. https://doi.org/10.3329/bjar.v40i1.23768.

Rattunde HFW, Weltzien E, Diallo B, Diallo AG, Sidibe M, Toure AO, Rathore A, Das RR, Leiser WL, Toure A (2013) Yield of photoperiod-sensitive sorghum hybrids based on Guinea-race germplasmunder farmers’ field conditions in Mali. Crop Science 53(6): 2454–2461. https://doi.org/10.2135/cropsci2013.03.0182.

Reddy RN, Madhusudhana R, Mohan SM, Chakravarthi DVN, Mehtre SP, Seetharama N, Patil JV (2013) Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics 126(8): 1921–1939. https://doi.org/10.1007/s00122-013-2107-8.

Rutayisire A, Mukayiranga A, Habineza JC, Avosa M, Edema R, Lubadde G (2020) Effectof low- temperature stress on-field performance of highland sorghum (Sorghum bicolor (L.) Moench) at flowering stages. Journal of Plant Breeding and Crop Science 12(1): 25–33. https://doi.org/10.5897/JPBCS2019.0844.

Seo KH, Mohanan P, Yang DU, Kim YJ, Kwon WS, Yang DC (2019) Interspecies hybrids of Panax ginseng Meyer new line 0837 and Panax quinquefolius generated superior F1 hybrids with greater biomass and ginsenoside contents. Horticulture, Environment and Biotechnology 60(4): 573–583. https://doi.org/10.1007/s13580-019-00154-4.

Shukla S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plantheight and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research203: 181–191. https://doi.org/10.1016/ j.fcr.2016.12.004.

Smale M, Assima A, Kergna A, Theriault V, Weltzien E (2018) Farm family effects of adopting improved and hybrid sorghum seed in the Sudan Savanna of West Africa. Food Policy74: 162–171. https://doi.org/10.1016/j.foodpol.2018.01.001.

Suguna M, Aruna C, Deepika C, Ratnavathi CV, Tonapi VA (2021) Genetic analysis of semolina recovery and associated traits-A step towards breeding for specific end uses in sorghum (Sorghum bicolor (L.) Moench). Journal of Cereal Sciences 100(7): 103226. https://doi.org/10.1016/j.jcs.2021.103191.

Sulistyawati, Dyah R, Jabal TI, Maftuchah (2019) Genetic diversity of local sorghum (Sorghum bicolor) genotypes of East Java, Indonesia for agro-morphological and physiological traits. Biodiversitas Journal of Biological Diversity 20(9): 2503–2510. https://doi.org/10.13057/biodiv/d200910.

Takamizo T, Nakatsu S, Nagamura Y, Fujimori M, Tarumoto I (2012) Mapping of DNA markers linked to a thermosensitivity gene in sorghum. Bull NARO Institute of Livestock and Grassland Science12: 1–8.https://www.nairo.affrc.go.jp/publicity_report/ publication/archive/files/nilgs_kenhou_12_01.pdf.

Thivierge MN, Chantigny MH, Seguin P, Vanasse A (2015) Sweet pearl millet and sweet sorghum have high nitrogen uptake efficiency under cool and wet climate. Nutrient Cycling in Agroecosystems 102(2): 195–208. https://doi.org/10.1007/s10705-015-9689-2.

Timu AG, Mulwa R, Okello J, Kamau M (2014) The role of varietal attributes on adoption of improved seed varieties: the case of sorghum in Kenya. Agriculture & Food Security 3(1): 1–7. https://doi.org/10.13057/biodiv/d200910.

Visarada KBRS, Venkateswaran K (2018) Wide hybridization. In Breeding Sorghum forDiverse End UsesPp. 131–139. https://doi.org/10.1016/B978-0-08-101879-8.00008-5.

Wang YH, Upadhyaya HD, Dweikat I (2016) Sorghum. In Genetic and Genomic Resources for Grain Cereals Improvement 1978, pp. 227–251. https://doi.org/10.1016/B978-0-12-802000-5.00005-8.

Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants Proceedings of Biological Science 280: 20130133, 1–10. https://doi.org/10.1098/rspb.2013.0133.

Wu G, Johnson SK, Bornman JF, Bennett S, Singh V, Fang Z (2016) Effect of genotype and growth temperature on sorghum grain physical characteristics, polyphenol content, and antioxidant activity. Cereal Chemistry93(4): 419–425. https://doi.org/10.1094/ CCHEM-01-16-0003- R.

Xie P, Shi J, Tang S, Chen C, Khan A, Zhang F, Xiong Y, Li C, He W, Wang G, Lei F, Wu Y, Xie Q (2019) Control of Bird

Feeding Behaviour by Tannin1 through Modulating the Biosynthesis of Polyphenols and Fatty Acid-Derived Volatiles in Sorghum. Molecular Plant12(10): 1315–1324. https://doi.org/ 10.1016/j.molp.2019.08.004.

Yang Z, van Oosterom EJ, Jordan DR, Doherty A, Hammer GL (2010) Genetic variation in potential kernel size affects kernel growth and yield of sorghum. Crop Science 50(2): 685–695. https://doi.org/10.2135/cropsci2009.06.0294.

Young AG, Broadhurst LM, Thrall PH (2012) Non-additive effects of pollen limitation and self-incompatibility limitation and self-incompatibility reduce plant reproductive success and population viability. Annals of Botany109(3): 643–653. https://doi.org/ 10.1093/aob/mcr290.

Downloads

Published

2021-08-30

How to Cite

Cecilia A. Shinda, Gitari, J. N. ., Nthakanio, P. N. ., Runo, S. ., Gichimu, B. ., & Samuel Maina. (2021). PERFORMANCE ASSESSMENT OF CROSSES BETWEEN GADAM AND HARDCORE TANNIN SORGHUM IN HYBRID LINES PRODUCTION. Journal of Experimental Biology and Agricultural Sciences, 9(4), 417–431. https://doi.org/10.18006/2021.9(4).417.431

Issue

Section

RESEARCH ARTICLES