Potential of lignocellulolytic biocatalysts of native and proposed genetically engineered microbial cell factories on jute fiber modification and jute waste recycling: A review
DOI:
https://doi.org/10.18006/2022.10(5).932.952Keywords:
Jute fiber modification, Genetic engineering, Lignocellulolytic enzymes, Lignocellulosic waste biomass, Value-added productsAbstract
The lignocellulolytic microbial systems from different parts of the world responsible for lignocellulosic biomass (LCB) like jute (Corchorus spp.) waste degradation, fiber modification, and bioenergy production are not limited to a specific prokaryotic or eukaryotic group. The industrial applications of these highly efficient bacterial, fungal and algal communities are related to the production of lignocellulolytic enzymes such as cellulase, hemicellulase, lignin-peroxidase, versatile peroxidase, laccase, thermostable oxidants, pectinase, etc. They are a blessing for the jute, dye, paper, pulp, and biofuel industries as they help to generate a sustainable ecosystem. The jute plant is lignocellulosic biomass so it can be utilized in various ways, from everyday goods to power generation. Jute industries generally use different physicochemical strategies to generate quality fiber and post-retting activities, but these approaches cannot produce desired products; hence microbial routes are best for quality fiber generation, waste remediation, and biofuel generation. To this end, this review summarizes the most important milestones of the development of the leading enzyme-producing cell factories and their engineering by genetic, metabolic, and synthetic biology approaches with the emergence of high throughput methods, such as site-directed mutagenesis and others that can analyze the relevant mutations to accelerate our understanding of lignocellulolytic enzymology.
References
Abd Ellatif, S., El-Sheekh, M. M., & Senousy, H. H. (2021). Role of microalgal ligninolytic enzymes in industrial dye decolorization. International Journal of Phytoremediation, 23(1), 41– 52. https://doi.org/10.1080/15226514.2020.1789842 DOI: https://doi.org/10.1080/15226514.2020.1789842
Achwal, W. B., & Sinkar, U. W. (1994). Modified processing of jute fabrics to minimize photo yellowing: Part II-Use of UV absorbers. Indian Journal of Fiber and Textile Research, 19, 30–33.
Afreen, S., Shamsi, T. N., Baig, M. A., Ahmad, N., et al. (2017). A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye. PloS One, 12(4), e0175144. https://doi.org/10.1371/journal.pone.0175144 DOI: https://doi.org/10.1371/journal.pone.0175144
Aftab, M. N., Iqbal, I., Riaz, F., Karadag, A., & Tabatabaei, M. (2019). Different pretreatment methods of lignocellulosic biomass for use in biofuel production. In Abd El-Fatah Abomohra (Ed), Biomass for bioenergy-recent trends and future challenges (pp. 1-24). Intech open. https://10.5772/intechopen.84995 DOI: https://doi.org/10.5772/intechopen.84995
Ahmed, Z., & Akhter, F. (2001). Jute Retting: An Overview. Journal of Biological Sciences (Faisalabad, Pakistan), 1(7), 685–688. https://doi.org/10.3923/jbs.2001.685.688 DOI: https://doi.org/10.3923/jbs.2001.685.688
Arora, P., Shukla, V. K., & Tiwari, A. (2019). Algal Cellulases. In N. Srivastava, M. Srivastava, P.K. Mishra, P.W. Ramteke, R.L. Singh (Eds), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 283-295). Elsevier. https://doi.org/10.1016/B978-0-444- 64223-3.00016-3 DOI: https://doi.org/10.1016/B978-0-444-64223-3.00016-3
Autore, F., Del Vecchio, C., Fraternali, F., Giardina, P., Sannia, G., & Faraco, V. (2009). Molecular determinants of peculiar properties of a Pleurotus ostreatus laccase: Analysis by site- directed mutagenesis. Enzyme and Microbial Technology, 45(6–7), 507–513. https://doi.org/10.1016/j.enzmictec.2009.08.004 DOI: https://doi.org/10.1016/j.enzmictec.2009.08.004
Banik, S., Basak, M. K., & Sil, S. C. (2007). Effect of inoculation of pectinolytic mixed bacterial culture on improvement of ribbon retting of jute and Kenaf. Journal of Natural Fibers, 4(2), 33– 50. https://doi.org/10.1300/j395v04n02_03 DOI: https://doi.org/10.1300/J395v04n02_03
Barai, S., Chattopadhyay, L., & Majumdar, B. (2020). Studies on delignification in jute (Corchorus spp L.) fiber with promising lignin degrading bacterial isolates. Journal of Environmental Biology. 41, 703-710. http://doi.org/10.22438/jeb/41/4/MRN-1252 DOI: https://doi.org/10.22438/jeb/41/4/MRN-1252
Basu, G., Samanta, A. K., & Ghosh, P. (2008). Enzyme and silicone treatments on jute fiber. Part II: Effect on process performance during yarn making and yarn properties. Journal of the Textile Institute, 99(4), 307–316. https://doi.org/10.1080/00405000701414816 DOI: https://doi.org/10.1080/00405000701414816
Bayram Akcapinar, G., Venturini, A., Martelli, P. L., Casadio, R., & Sezerman, U. O. (2015). Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches. Protein Engineering, Design and Selection, 28(5), 127–135. https://doi.org/10.1093/protein/gzv012 DOI: https://doi.org/10.1093/protein/gzv012
Biswas, D., Nandi, A. K., Chakrabarti, S. K., & Ray, P. (2013). Development of sustainable technology to produce jute-ramie blended textile and its applications. Conference Papers in Materials Science, 2013, 1–4. https://doi.org/10.1155/2013/578690 DOI: https://doi.org/10.1155/2013/578690
Bonugli-Santos, R. C., Durrant, L. R., da Silva, M., & Sette, L. D. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46(1), 32–37. https://doi.org/10.1016/ j.enzmictec.2009.07.014 DOI: https://doi.org/10.1016/j.enzmictec.2009.07.014
Chakrabarti, S. K., & Sinha, S. N. (2001). Enzyme additives technology for productivity improvement and cost reduction in jute processing. Journal of the Institution of Engineers (India), 82, 1–4. https://bit.ly/3J4ywDG
Chares Subash, M., & Muthiah, P. (2021). Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Cleaner Engineering and Technology, 5, 1-11, https://doi.org/10.1016/j.clet.2021.100304 DOI: https://doi.org/10.1016/j.clet.2021.100304
Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A., & Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. International Journal of Environmental Research and Public Health, 18(11), 6001. https:// doi.org/10.3390/ijerph18116001 DOI: https://doi.org/10.3390/ijerph18116001
Cogulet, A., Blanchet, P., & Landry, V. (2016). Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology. B: Biology, 158, 184–191. https://doi.org/10.1016/j.jphotobiol.2016.02.030 DOI: https://doi.org/10.1016/j.jphotobiol.2016.02.030
Cortes-Tolalpa, L., Norder, J., van Elsas, J. D., & Falcao Salles, J. (2018). Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Applied Microbiology and Biotechnology, 102(6), 2913–2927. https://doi.org/10.1007/ s00253-017-8714-6 DOI: https://doi.org/10.1007/s00253-017-8714-6
Cox, B. J., & Ekerdt, J. G. (2013). Pretreatment of yellow pine in an acidic ionic liquid: extraction of hemicellulose and lignin to facilitate enzymatic digestion. Bioresource Technology, 134, 59– 65. https://doi.org/10.1016/j.biortech.2013.01.081 DOI: https://doi.org/10.1016/j.biortech.2013.01.081
Das, S., & Ghosh, D. (2021). Isolation of ligninolytic microbial regime from mangrove ecosystem for the bioremediation of lignocellulosic waste generated from jute plant. Advanced International Journals of Research Abstracts, 55.
Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. International Journal of Biological Sciences, 5(6), 578–595. https://doi.org/10.7150/ijbs.5.578 DOI: https://doi.org/10.7150/ijbs.5.578
Dong, A., Fan, X., Wang, Q., Yu, Y., & Cavaco-Paulo, A. (2016). Enzymatic treatments to improve mechanical properties and surface hydrophobicity of jute fiber membranes. Bioresources, 11(2), 3289-3302. https://doi.org/10.15376/biores.11.2.3289-3302 DOI: https://doi.org/10.15376/biores.11.2.3289-3302
Dong, A., Li, F., Fan, X., Wang, Q., et al. (2018). Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites. Journal of Thermoplastic Composite Materials, 31(4), 483–499. https://doi.org/10.1177/ 0892705717706538 DOI: https://doi.org/10.1177/0892705717706538
Duan, S., Feng, X., Cheng, L., Peng, Y., Zheng, K., & Liu, Z. (2016). Bio-degumming technology of jute bast by Pectobacterium sp. DCE-01. Applied Microbiology and Biotechnology Express, 6(1), 86. https://doi.org/10.1186/s13568-016-0255-3 DOI: https://doi.org/10.1186/s13568-016-0255-3
Durão, P., Bento, I., Fernandes, A. T., Melo, E. P., Lindley, P. F., & Martins, L. O. (2006). Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 11(4), 514–526. https://doi.org/10.1007/ s00775-006-0102-0 DOI: https://doi.org/10.1007/s00775-006-0102-0
Elgamsy, R., Allah Abo Elmagd, A., Elrahman Mokhtar, A., Khalid, I., et al. (2022). Developing fire retardant composites of biodegradable polyethylene reinforced with agricultural wastes. Ain Shams Engineering Journal, 13(6), 1-10. https://doi.org/10.1016/j.asej.2022.101768 DOI: https://doi.org/10.1016/j.asej.2022.101768
Frommhagen, M., Mutte, S. K., Westphal, A. H., Koetsier, M. J., et al. (2017). Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnology for Biofuels, 10(1), 121. https://doi.org/10.1186/ s13068-017-0810-4 DOI: https://doi.org/10.1186/s13068-017-0810-4
Fujian, X., Hongzhang, C., & Zuohu, L. (2001). Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresource Technology, 80(2), 149–151. https://doi.org/10.1016/s0960-8524(01)00082-7 DOI: https://doi.org/10.1016/S0960-8524(01)00082-7
Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335. https://doi.org/10.1038/nature11479 DOI: https://doi.org/10.1038/nature11479
Georgianna, D. R., Hannon, M. J., Marcuschi, M., Wu, S., et al. (2013). Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Research, 2(1), 2–9. https://doi.org/10.1016/j.algal.2012.10.004 DOI: https://doi.org/10.1016/j.algal.2012.10.004
Ghorai, A. K., & Chakraborty, A. K. (2020). Sustainable in-situ jute retting technology in low volume water using native microbial culture to improve fiber quality and retting waste management. International Journal of Current Microbiology and Applied Sciences, 9(11), 1080– 1099. https://doi.org/10.20546/ ijcmas.2020.911.126 DOI: https://doi.org/10.20546/ijcmas.2020.911.126
Ghosh, D., & Das, S. (2020). Genetic and metabolic engineering approaches for improving accessibilities of lignocellulosic biomass toward biofuels generations. In A. Kuila and V. Sharma (Eds), Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass (pp. 13–35). Elsevier. https://doi.org/10.1016/B978-0-12-817953-6.00002-6 DOI: https://doi.org/10.1016/B978-0-12-817953-6.00002-6
Ghosh, D., & Das, S. (2021). Engineering of microbial cellulases for value-added product generations. In D.K. Tuli & A. Kuila (Eds), Current Status and Future Scope of Microbial Cellulases (pp. 171–187). Elsevier. https://doi.org/10.1016/B978-0-12-821882-2.00008-9 DOI: https://doi.org/10.1016/B978-0-12-821882-2.00008-9
Ghosh, D., & Hallenbeck, P. C. (2012). Advanced Bioethanol Production. In P.C. Hallenbeck (Ed), Microbial Technologies in Advanced Biofuels Production (pp. 165–181). Springer US. https://10.1007/978-1-4614-1208-3 DOI: https://doi.org/10.1007/978-1-4614-1208-3_10
Ghosh, D., & Talukdar, P. (2020). Relevance of Microbial Enzymes in Textile Industries Emphasizing Metabolic Engineering Panorama. In H. Thatoi, P.K.D., Mohapatra, S., Mohapatra, & Mondal, K.C. (Eds.), Microbial Fermentation and Enzyme Technology (1st ed.) (pp. 195-205). CRC Press. https://doi.org/10.1201/9780429061257 DOI: https://doi.org/10.1201/9780429061257-13
Guo, P., Zhu, W., Wang, H., Lü, Y., Wang, X., Zheng, D., & Cui, Z. (2010). Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. Journal of Microbiology and Biotechnology, 20(2), 254–264. https://doi.org/10.4014/jmb.0906.06035 DOI: https://doi.org/10.4014/jmb.0906.06035
Haque, M. S., Zakaria, A., Adhir, K. B., & Firoza, A. (2003). Identification of Micrococcus sp. responsible for the acceleration of jute retting. Pakistan Journal of Biological Sciences, 6, 686- 687. https://10.3923/pjbs.2003.686.687 DOI: https://doi.org/10.3923/pjbs.2003.686.687
Haque, Md Shamsul, Asaduzzaman, M., Akhter, F., & Ahmed, Z. (2001). Retting of Green Jute Ribbons (Corchorus capsularis var. CVL-1) with Fungal Culture. Journal of Biological Sciences (Faisalabad, Pakistan), 1(11), 1012–1014. https://doi.org/10.3923/ jbs.2001.1012.1014 DOI: https://doi.org/10.3923/jbs.2001.1012.1014
Harmsen, P. F., Huijgen, W., Bermudez, L., & Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass (No.1184). Wageningen University and Research: Wageningen, The Netherlands. https://library.wur.nl/ WebQuery/wurpubs/fulltext/150289.
Hasan, R., Aktar, N., Kabir, S. M. T., Honi, U., et al. (2020). Pectinolytic bacterial consortia reduce jute retting period and improve fiber quality. Scientific Reports, 10(1), 5174. https://doi.org/10.1038/s41598-020-61898-z DOI: https://doi.org/10.1038/s41598-020-61898-z
Hossain, M. M., Siddiquee, S., & Kumar, V. (2021). Critical factors for optimum biodegradation of bast fiber’s gums in bacterial retting. Fibers (Basel, Switzerland), 9(8), 52. https://doi.org/10.3390/fib9080052 DOI: https://doi.org/10.3390/fib9080052
Hossen, M. Z., Akhter, S., Tahmina, S. A., & Dayan, M. A. R. (2020). Jute Fiber: A Suitable Alternative to Wood Fiber for Paper and Pulp Production. American Journal of Pure and Applied Biosciences, 2(6), 177-182. https://doi.org/10.34104/ ajpab.020.01770182 DOI: https://doi.org/10.34104/ajpab.020.01770182
Hu, J., Xue, Y., Guo, H., Gao, M.T., et al. (2017). Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity. Bioresource Technology, 227, 247–255. https://doi.org/10.1016/j.biortech.2016.12.058 DOI: https://doi.org/10.1016/j.biortech.2016.12.058
Hui, W., Jiajia, L., Yucai, L., Peng, G., et al. (2013). Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Bioresource Technology, 136, 481–487. https://doi.org/10.1016/j.biortech.2013.03.015 DOI: https://doi.org/10.1016/j.biortech.2013.03.015
Ihssen, J., Jankowska, D., Ramsauer, T., Reiss, R., et al. (2017). Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Protein Engineering, Design and Selection: PEDS, 30(6), 449–453. https://doi.org/10.1093/protein/gzx026 DOI: https://doi.org/10.1093/protein/gzx026
Islam, M. M., & Rahman, M. M. (2013). Advances in jute and allied fibers post-harvest processing technologies in Bangladesh: Adoption constraints, prospect and future thrust. WebPub Journal of Scientific Research, 1(2), 20–30.
Islam, M. N., Hossain, S. M., Khatton, A., Rahman, M. M., et al. (2022a). Microcrystalline Cellulose from Jute Fiber: A Bright Prospect for Pharmaceutical Industry. Scholars International Journal of Chemistry and Material Sciences, 5(6), 100-104. https://10.36348/sijcms.2022.v05i06.003 DOI: https://doi.org/10.36348/sijcms.2022.v05i06.003
Islam, M. N., Khatton, A., Sarker, J., Sikder, H. A., & Chowdhury, A. S. (2022b). Modification of Jute Fiber by Etherification Method for Diverse Textile Uses. Saudi Journal of Engineering and Technology, 7(2), 107-111. https://10.36348/sjet.2022.v07i02.007 DOI: https://doi.org/10.36348/sjet.2022.v07i02.007
Ivanovska, A., Maletić, S., Djokić, V., Tadić, N., & Kostić, M. (2022). Effect of chemical modifications and coating with Cu-based nanoparticles on the electro-physical properties of jute fabrics in a condition of high humidity. Industrial Crops and Products, 180, 114792. https://doi.org/10.1016/j.indcrop.2022.114792 DOI: https://doi.org/10.1016/j.indcrop.2022.114792
Jha, S. K., Roy, M. L., Shamna, A., Kumar, S., Samajdar, T., & Naik, R. K. (2022). Performance evaluation of CRIJAF nail weeder in jute growing areas of North 24 Parganas district of west Bengal. Indian Research Journal of Extension Education, 22(2), 156–159. https://doi.org/10.54986/irjee/2022/apr_jun/156-159 DOI: https://doi.org/10.54986/irjee/2022/apr_jun/156-159
Kang, H.J., Uegaki, K., Fukada, H., & Ishikawa, K. (2007). Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles: Life under Extreme Conditions, 11(2), 251–256. https://doi.org/10.1007/ s00792-006-0033-2 DOI: https://doi.org/10.1007/s00792-006-0033-2
Katiyar, P., Srivastava, S. K., & Tyagi, V. K. (2015). A current scenario and novel approaches to degrade the lignocellulosic biomass for the production of biodiesel. Journal of Fundamentals of Renewable Energy and applications, 5(161), 2.
Kim, E. S., Liu, S., Abu-Omar, M. M., & Mosier, N. S. (2012). Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating. Energy and Fuels: An American Chemical Society Journal, 26(2), 1298–1304. https://doi.org/10.1021/ef2014106 DOI: https://doi.org/10.1021/ef2014106
Kim, H.W., Takagi, Y., Hagihara, Y., & Ishikawa, K. (2007). Analysis of the putative substrate binding region of hyperthermophilic endoglucanase from Pyrococcus horikoshii. Bioscience, Biotechnology, and Biochemistry, 71(10), 2585–2587. https://doi.org/10.1271/bbb.70322 DOI: https://doi.org/10.1271/bbb.70322
Kim, S., Silva, C., Zille, A., Lopez, C., Evtuguin, D. V., & Cavaco-Paulo, A. (2009). Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polymer International, 58(8), 863–868. https://doi.org/10.1002/pi.2600 DOI: https://doi.org/10.1002/pi.2600
Koseki, T., Takahashi, K., Fushinobu, S., Iefuji, H., et al. . (2005). Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochimica et Biophysica Acta, 1722(2), 200–208. https://doi.org/10.1016/j.bbagen.2004.12.016 DOI: https://doi.org/10.1016/j.bbagen.2004.12.016
Kozlowski, R., Batog, J., Konczewicz, W., Mackiewicz-Talarczyk, M., et al. (2006). Enzymes in bast fibrous plant processing. Biotechnology Letters, 28(10), 761–765. https://doi.org/10.1007/ s10529-006-9044-4 DOI: https://doi.org/10.1007/s10529-006-9044-4
Kudanga, T., Prasetyo, E. N., Sipilä, J., Nyanhongo, G. S., & Guebitz, G. M. (2010). Chemo- enzymatic functionalisation of lignocellulose materials using oxiranes. Process Biochemistry (Barking, London, England), 45(9), 1557–1562. https://doi.org/ 10.1016/j.procbio.2010.06.008 DOI: https://doi.org/10.1016/j.procbio.2010.06.008
Liang, C., Gui, X., Zhou, C., Xue, Y., Ma, Y., & Tang, S.-Y. (2015). Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Applied Microbiology and Biotechnology, 99(6), 2673–2682. https://doi.org/10.1007/s00253-014-6091-y DOI: https://doi.org/10.1007/s00253-014-6091-y
Liang, J., Fang, X., Lin, Y., & Wang, D. (2018). A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. Journal of Hazardous Materials, 347, 341–348. https://doi.org/10.1016/ j.jhazmat.2018.01.023 DOI: https://doi.org/10.1016/j.jhazmat.2018.01.023
Liew, F. K., Hamdan, S., Rahman, M. R., & Rusop, M. (2017). Thermomechanical properties of jute/bamboo cellulose composite and its hybrid composites: The effects of treatment and fiber loading. Advances in Materials Science and Engineering, 2017, 1–10. https://doi.org/10.1155/2017/8630749 DOI: https://doi.org/10.1155/2017/8630749
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. https://doi.org/10.1016/j.pecs.2012.03.002 DOI: https://doi.org/10.1016/j.pecs.2012.03.002
Lu, J., Yang, Z., Xu, W., Shi, X., & Guo, R. (2019). Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk. Journal of Environmental Sciences (China), 78, 118–126. https://doi.org/10.1016/j.jes.2018.07.010 DOI: https://doi.org/10.1016/j.jes.2018.07.010
Majumdar, B., Das, Suparna, Saha, A.R., Chowdhury, H., Kundu, D. K. & Mahapatra, B. S. (2013). Improved Retting Of Jute and Mesta with Microbial Formulation (Bulletin No. 04 /2013). Central Research Institute for Jute and Allied Fibers (ICAR), Barrackpore, Kolkata, pp. – 32.
Manimekalai, G., & Kavitha, S. (2017). A review on application of retting techniques for naturalfiber extraction. International Journal of Creative Research Thoughts, 5(4), 372-377. https://rb.gy/iv3qpa
Mondal, M., Ibrahim, H., Khan, M., Rahman, M., Islam, M., & Rabbi, M. A. (2016). Characterization of grafted jute fiber using acrylate monomers pretreated with alkali. Fashion and Textiles, 3(1), 1-14. https://doi.org/10.1186/s40691-016-0060-2 DOI: https://doi.org/10.1186/s40691-016-0060-2
Naseeruddin, S., Srilekha Yadav, K., Sateesh, L., Manikyam, A., Desai, S., & Venkateswar Rao, L. (2013). Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora. Bioresource Technology, 136, 542–549. https://doi.org/10.1016/j.biortech.2013.03.053 DOI: https://doi.org/10.1016/j.biortech.2013.03.053
Nayab-Ul-Hossain, A. K. M., Sela, S. K., Hassan, M. N., & Sarkar, A. (2020). Surface modification of ligno-cellulosic fiber (jute) to increase electrical conductivity. Materials Letters: X, 5(100036), 100036. https://doi.org/10.1016/j.mlblux.2019.100036 DOI: https://doi.org/10.1016/j.mlblux.2019.100036
Ni, X., Dong, A., Fan, X., Wang, Q., Yu, Y., & Cavaco-Paulo, A. (2015). Jute/polypropylene composites: Effect of enzymatic modification on thermo-mechanical and dynamic mechanical properties. Fibers and Polymers, 16(10), 2276–2283. https://doi.org/10.1007/s12221-015-5475-7 DOI: https://doi.org/10.1007/s12221-015-5475-7
Ochoa-Chacón, A., Martinez, A., Poggi-Varaldo, H. M., Villa-Tanaca, L., Ramos-Valdivia, A. C., & Ponce-Noyola, T. (2022). Xylose metabolism in bioethanol production: Saccharomyces cerevisiae vs non-Saccharomyces yeasts. Bioenergy Research, 15(2), 905–923. https://doi.org/10.1007/s12155-021-10340-x DOI: https://doi.org/10.1007/s12155-021-10340-x
Otto, B., & Schlosser, D. (2014). First laccase in green algae: purification and characterization of an extracellular phenol oxidase from Tetracystis aeria. Planta, 240(6), 1225–1236. https://doi.org/10.1007/s00425-014-2144-9 DOI: https://doi.org/10.1007/s00425-014-2144-9
Otto, B., Beuchel, C., Liers, C., Reisser, W., Harms, H., & Schlosser, D. (2015). Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. Federation of European Microbiological Societies Microbiology Letters, 362(11), 1-8. https://doi.org/ 10.1093/femsle/fnv072 DOI: https://doi.org/10.1093/femsle/fnv072
Otto, B., Schlosser, D., & Reisser, W. (2010). First description of a laccase-like enzyme in soil algae. Archives of Microbiology, 192(9), 759–768. https://doi.org/10.1007/s00203-010-0603-7 DOI: https://doi.org/10.1007/s00203-010-0603-7
Patil, H., Mudaliar, S., & Athalye, A. (2022). Ultrasound‐assisted enzymatic scouring of jute optimised by response surface methodology and its natural dyeing. Coloration Technology, 138(5), 1‐12. https://doi.org/10.1111/cote.12638 DOI: https://doi.org/10.1111/cote.12638
Ramos, O. S., & Malcata, F. X. (2011). Food-Grade Enzymes. In Murray Moo-Young (Ed.), Comprehensive Biotechnology (pp. 555–569). Elsevier. http://dx.doi.org/10.1016/B978-0-08 088504-9.00213-0 DOI: https://doi.org/10.1016/B978-0-08-088504-9.00213-0
Rathner, R., Petz, S., Tasnádi, G., Koller, M., & Ribitsch, V. (2017). Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17α-ethinylestradiol from differently polluted wastewater bodies. Journal of Environmental Chemical Engineering, 5(2), 1920–1926. https://doi.org/10.1016/ j.jece.2017.03.034 DOI: https://doi.org/10.1016/j.jece.2017.03.034
Reynaud, C., Tapin-Lingua, S., Elegir, G., Petit-Conil, M., & Baumberger, S. (2013). Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate. Journal of Biotechnology, 167(3), 302–308. https://doi.org/10.1016/ j.jbiotec.2013.07.014 DOI: https://doi.org/10.1016/j.jbiotec.2013.07.014
Riva, S. (2006). Laccases: blue enzymes for green chemistry. Trends in Biotechnology, 24(5), 219–226. https://doi.org/10.1016/ j.tibtech.2006.03.006 DOI: https://doi.org/10.1016/j.tibtech.2006.03.006
Roberts, J. N., Singh, R., Grigg, J. C., Murphy, M. E. P., Bugg, T. D. H., & Eltis, L. D. (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23), 5108–5119. https://doi.org/10.1021/ bi200427h DOI: https://doi.org/10.1021/bi200427h
Ruiz-Dueñas, F. J., Morales, M., Mate, M. J., Romero, A., et al. (2008). Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry, 47(6), 1685–1695. https://doi.org/10.1021/bi7020298 DOI: https://doi.org/10.1021/bi7020298
Ryu, K., Hwang, S. Y., K. H., Kang, J. H., & Lee, E. K. (2008a). Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. Journal of Biotechnology, 133(1), 110–115. https://doi.org/ 10.1016/j.jbiotec.2007.09.008 DOI: https://doi.org/10.1016/j.jbiotec.2007.09.008
Ryu, K., Kang, J. H., Wang, L., & Lee, E. K. (2008b). Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. Journal of Biotechnology, 135(3), 241–246. https://doi.org/10.1016/ j.jbiotec.2008.04.007 DOI: https://doi.org/10.1016/j.jbiotec.2008.04.007
Samanta, A. K., Mitra, S., & Mahalanabis, K. K. (2006). Effect of selective chemical and bio- chemical softening treatment of jute fabric. Journal of the Institution of Engineers (India), Part TX: Textile Engineering Division, 86, 21–33. https://rb.gy/khi74k
Samanta, A. K., Singhee, D., Basu, G., & Mahalanabis, K. K. (2005). Effect of selective pretreatments and subsequent mixed enzyme treatment on properties of jute-cotton union fabric. Indian Journal of Fiber and Textile Research, 30, 451-467.
Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001 DOI: https://doi.org/10.1016/j.biotechadv.2008.11.001
Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61(1), 263–289. https://doi.org/10.1146/ annurev-arplant-042809-112315 DOI: https://doi.org/10.1146/annurev-arplant-042809-112315
Sfiligoj, M., Hribernik, S., Stana, K., & Kree, T. (2013). Plant Fibers for Textile and Technical Applications. In S. Grundas and A. Stepniewski (Eds.), Advances in Agrophysical Research (pp. 369-398). IntechOpen. https://doi.org/10.5772/52372 DOI: https://doi.org/10.5772/52372
Shahinur, S., Sayeed, M. M. A., Hasan, M., Sayem, A. S. M., Haider, J., & Ura, S. (2022). Current development and future perspective on natural jute fibers and their biocomposites. Polymers, 14(7), 1445. https://doi.org/10.3390/polym14071445 DOI: https://doi.org/10.3390/polym14071445
Singh, A. K., Jha, S. K., Majumdar, B., Roy, M. L., Sarkar, S., & Ghorai, A. K. (2019a). Impacts of climate smart jute farming on resource use efficiency, productivity and economic benefits in rural Eastern India. Outlook on Agriculture, 48(1), 75–82. https://doi.org/10.1177/0030727019829488 DOI: https://doi.org/10.1177/0030727019829488
Singh, R. S., Singh, T., & Pandey, A. (2019b). Microbial Enzymes—An Overview. In R.S. Singh, R.R. Singhania, A. Pandey and C. Larroche, Advances in Enzyme Technology (pp. 1–40). Elsevier. https://10.1016/B978-0-444-64114-4.00001-7 DOI: https://doi.org/10.1016/B978-0-444-64114-4.00001-7
Sinha, S. N., & Paul, D. (2014). Impact of jute mill waste water on seed germination and vigour index of Cicer arietinum l. And Pisum sativum l. Journal of Biological and Scientific Opinion, 2(1), 66–69. https://doi.org/10.7897/2321-6328.02115 DOI: https://doi.org/10.7897/2321-6328.02115
Song, H., Liu, J., He, K., & Ahmad, W. (2021). A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. https://doi.org/ 10.1016/j.cscm.2021.e00724 DOI: https://doi.org/10.1016/j.cscm.2021.e00724
Sreenath, H. K., Shah, A. B., Yang, V. W., Gharia, M. M., & Jeffries, T. W. (1996). Enzymatic polishing of jute/cotton blended fabrics. Journal of Fermentation and Bioengineering, 81(1), 18– 20. https://doi.org/10.1016/0922-338x(96)83113-8 DOI: https://doi.org/10.1016/0922-338X(96)83113-8
Subhadra, B. G. (2010). Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy, 38(10), 5892–5901. https://doi.org/10.1016/j.enpol.2010.05.043 DOI: https://doi.org/10.1016/j.enpol.2010.05.043
Subhadra, B., & Grinson-George. (2011). Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world: Algal biorefinery-based industrial ecology. Journal of the Science of Food and Agriculture, 91(1), 2–13. https://doi.org/10.1002/jsfa.4207 DOI: https://doi.org/10.1002/jsfa.4207
Subhedar, P. B., & Gogate, P. R. (2016). Use of ultrasound for pretreatment of biomass and subsequent hydrolysis and fermentation. In S.I. Mussatto (Ed.), Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery (pp. 127–149). Elsevier. https://10.1016/B978-0-12-802323-5.00006-2 DOI: https://doi.org/10.1016/B978-0-12-802323-5.00006-2
Sun, F., & Chen, H. (2007). Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. Journal of Chemical Technology and Biotechnology, 82(11), 1039–1044. https://doi.org/10.1002/jctb.1764 DOI: https://doi.org/10.1002/jctb.1764
Tamburini, E., León, A. G., Perito, B., & Mastromei, G. (2003). Characterization of bacterial pectinolytic strains involved in the water retting process. Environmental Microbiology, 5(9), 730– 736. https://doi.org/10.1046/j.1462-2920.2003.00462.x DOI: https://doi.org/10.1046/j.1462-2920.2003.00462.x
Tepe, O., & Dursun, A. Y. (2014). Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environmental Science and Pollution Research International, 21(16), 9911–9920. https://doi.org/10.1007/s11356-014-2833-8 DOI: https://doi.org/10.1007/s11356-014-2833-8
Thakur, K., Kalia, S., Kaith, B. S., Pathania, D., & Kumar, A. (2015). Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. Royal Society of Chemistry Advances, 5(94), 76844–76851. https://doi.org/10.1039/c5ra14891j DOI: https://doi.org/10.1039/C5RA14891J
Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., & Watanabe, T. (2006). Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. Journal of Biotechnology, 126(4), 431–439. https://doi.org/10.1016/j.jbiotec.2006.05.013 DOI: https://doi.org/10.1016/j.jbiotec.2006.05.013
Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., & Watanabe, T. (2008). Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Applied and Environmental Microbiology, 74(9), 2873–2881. https://doi.org/10.1128/aem.02080-07 DOI: https://doi.org/10.1128/AEM.02080-07
Van Sumere, C. (1992). Retting of flax with special reference to enzyme-retting. In HS Shekhar Sharma and CF Van Sumere (Eds.), The biology and processing of flax (pp. 153–193). M Publications. http://hdl.handle.net/1854/LU-222219
Vigneswaran, C., & Jayapriya, J. (2010). Effect on physical characteristics of jute fibers with cellulase and specific mixed enzyme systems. Journal of the Textile Institute, 101(6), 506–513. https://doi.org/10.1080/00405000802542333 DOI: https://doi.org/10.1080/00405000802542333
Wang, H., Memon, H., AM Hassan, E., Miah, M. S., & Ali, M. A. (2019). Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials, 12(8), 1226. http://dx.doi.org/10.3390/ma12081226 DOI: https://doi.org/10.3390/ma12081226
Wang, S., Yang, Y., Yang, R., Zhang, J., et al. (2014). Cloning and characterization of a cold-adapted endo-1,5-α-L-arabinanase from Paenibacillus polymyxa and rational design for acidic applicability. Journal of Agricultural and Food Chemistry, 62(33), 8460–8469. https://doi.org/10.1021/jf501328n DOI: https://doi.org/10.1021/jf501328n
Wang, Y., Yuan, H., Wang, J., & Yu, Z. (2009). Truncation of the cellulose binding domain improved thermal stability of endo-β-1, 4-glucanase from Bacillus subtilis JA18. Bioresource Technology, 100(1), 345–349. https://10.1016/j.biortech.2008.06.001 DOI: https://doi.org/10.1016/j.biortech.2008.06.001
Witayakran, S., & Ragauskas, A. J. (2009). Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme and Microbial Technology, 44(3), 176–181. https://doi.org/ 10.1016/j.enzmictec.2008.10.011 DOI: https://doi.org/10.1016/j.enzmictec.2008.10.011
Zhang, J., Shi, H., Xu, L., Zhu, X., & Li, X. (2015). Site-directed Mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PloS One, 10(7), e0133824. https://doi.org/10.1371/journal.pone.0133824 DOI: https://doi.org/10.1371/journal.pone.0133824
Zhang, S.B., & Wu, Z.L. (2011). Identification of amino acid residues responsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresource Technology, 102(2), 2093–2096. https://doi.org/ 10.1016/j.biortech.2010.08.019 DOI: https://doi.org/10.1016/j.biortech.2010.08.019
Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99(6), 1320–1328. https://doi.org/10.1002/bit.21712 DOI: https://doi.org/10.1002/bit.21712
Zhou, C., Wang, Q., Yu, Y., Fan, X., Cao, Y., & Li, T. (2017). Functional Modification of Jute Fiber by Enzymatic Grafting of
Gallate Esters. Chemical Engineering Transactions, 62, 193-198. https://10.3303/CET1762033
Zhou, H., Yang, D., Qiu, X., Wu, X., & Li, Y. (2013). A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H(2)O(2) incubation. Applied Microbiology and Biotechnology, 97(24), 10309–10320. https://doi.org/10.1007/ s00253-013-5267-1 DOI: https://doi.org/10.1007/s00253-013-5267-1
Zhu, S., Yu, P., Wang, Q., Cheng, B., Chen, J., & Wu, Y. (2013). Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology. Bioresources, 8(2), 1510-1512. https://doi.org/10.15376/biores.8.2.1510-1512 DOI: https://doi.org/10.15376/biores.8.2.1510-1512
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.