Antiradical and Oxidative Stress Release Properties of Trifolium pratense L. extract
DOI:
https://doi.org/10.18006/2022.10(4).852.860Keywords:
Caenorhabditis elegans, Trifolium pratense L., Callus culture, Ononin, Chlorogenic acid, Genistein, Biochanin A, Antiradical activityAbstract
Low adaptive capacity and oxidative stress are the factors leading to cellular dysfunction, protein and lipid peroxidation, and the development of diseases. In recent decades, there has been a trend toward the active use of plant-based antioxidants. Trifolium pratense L. is a promising plant for the pharmaceutical and food industry and has anti-radical properties. This work is devoted to studying the antiradical and oxidative stress-released properties of T. pratense in Caenorhabditis elegans under oxidative and temperature stress. The objective of this research was to evaluate the anti-radical properties of the T. pratense extracts and individual BAS (chlorogenic acid, ononin, biochanin A, genistein) and analysis their influences on the oxidative stress of Caenorhabditis elegans in the presence of paraquat. Analysis of the antiradical properties revealed that chlorogenic acid has the maximum ability to neutralize the free radical (35.49µmol). A separate analysis of oxidative stress revealed high ononin activity at concentrations of 10, 50, and 100 µmol at 48 hours of cultivation. Biochanin A increases survival by 13.1% compared to the control. The use of the extract (500µmol) contributed to an increase in survival on day 1 of incubation. Under conditions of thermal stress, ononin (50 and 200 µmol) has a positive effect on the viability of C. elegans. The extract and BAS of T. pratense are characterized by high antiradical activity. In addition, the ability to influence the viability of C. elegans was revealed. Therefore, it is worthwhile to further study the biological properties of T. pratense for use in geroprotective therapy.
References
Akbaribazm M., Khazaei M. R., & Khazaei. M. (2020). Trifolium pratense L. (red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor-bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti-inflammatory related pathways. Food Science & Nutrition, 8(8), 4276–4290. doi: 10.1002/fsn3.1724. DOI: https://doi.org/10.1002/fsn3.1724
Brekhman I. I., & Dardymov I. V. (1969). New substances of plant origin which increase nonspecific resistance. Annual Review of Pharmacology, 9, 419–430 doi: 10.1146/annurev.pa.09. 040169.002223. DOI: https://doi.org/10.1146/annurev.pa.09.040169.002223
Cai S. Q., Tang Z. M., Xiong C., Wu F. F., et al. (2022). The anti-inflammatory effects of apigenin and genistein on the rat intestinal epithelial (IEC-6) cells with TNF-α stimulation in response to heat treatment. Current Research in Food Science, 5, 918–926. https://doi.org/10.1016/j.crfs.2022.05.011. DOI: https://doi.org/10.1016/j.crfs.2022.05.011
Carranza A. del V., Saragusti A., Chiabrando G. A., Carrari F., & Asis R. (2020). Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy. Phytomedicine, 66, 153132. https://doi.org/10.1016/ j.phymed.2019.153132. DOI: https://doi.org/10.1016/j.phymed.2019.153132
Chen C., Song J., Chen M., Li Z., Tong X., et al. (2016). Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology, 17(2), 373–381 doi: 10.1007/s10522-015-9622-8. DOI: https://doi.org/10.1007/s10522-015-9622-8
Dong L., Yu L., Liu A., Alahmadi T. A., Almoallim H.S., & Durairaj K. (2022). Ononin mitigates streptozotocin-induced diabetic nephropathy in rats via alleviating oxidative stress and inflammatory markers. Journal of King Saud University – Science, 34(6), 102029. https://doi.org/10.1016/j.jksus.2022.102029. DOI: https://doi.org/10.1016/j.jksus.2022.102029
Dyshlyuk L. S., Fedorova A. M., Loseva A. I., & Eremeeva N. I. (2021). Callus cultures of Thymus vulgaris and Trifolium pratense as a source of geroprotectors. Food processing: techniques and technology, 51(2), 423–432. doi: 10.21603/2074-9414-2021-2-423-432. DOI: https://doi.org/10.21603/2074-9414-2021-2-423-432
Esmaeili K. A., Taha M. R., Mohajer S., & Banisalam B. (2015). Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International, 643285 doi: 10.1155/2015/643285. DOI: https://doi.org/10.1155/2015/643285
Gamborg O. L., Miller R. A., & Ojima. O. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158. DOI: https://doi.org/10.1016/0014-4827(68)90403-5
González-Peña M. A., Lozada-Ramírez J. D., & Ortega-Regules A.E. (2021) Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. Biochemistry and Biophysics Reports, 26, 100989. doi: 10.1016/j.bbrep.2021.100989. DOI: https://doi.org/10.1016/j.bbrep.2021.100989
Hou L., Jiang M., Guo Q., & Shi W. (2019). Zymolytic Grain Extract (ZGE) Significantly Extends the Lifespan and Enhances the Environmental Stress Resistance of Caenorhabditis elegans. International Journal of Molecular Sciences, 20(14), 3489. doi: 10.3390/ijms20143489. DOI: https://doi.org/10.3390/ijms20143489
Jattujan P., Chalorak P., Siangcham T., Sangpairoj K., & Nobsathian S. (2018). Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegans. Experimental Gerontology, 110, 158–171. doi: 10.1016/j.exger.2018.06.006. DOI: https://doi.org/10.1016/j.exger.2018.06.006
Langrish T. A. G., & Premarajah R. (2013). Antioxidant capacity of spray-dried plant extracts: Experiments and simulations. Advanced Powder Technology, 24(4), 771–779. https://doi.org/ 10.1016/j.apt.2013.03.020) DOI: https://doi.org/10.1016/j.apt.2013.03.020
Leite N. R., de Araújo L., Dos Santos da Rocha P., Agarrayua D. A., et al. (2020). Baru Pulp (Dipteryx alata Vogel): Fruit from the Brazilian Savanna Protects against Oxidative Stress and Increases the Life Expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules, 10(8), 1106. doi: 10.3390/biom10081106. DOI: https://doi.org/10.3390/biom10081106
Luo L., Gao W., Zhang Y., Wang G., Wu H., & Gao W. (2020). Integrated Phytochemical Analysis Based on UPLC-MS and Network Pharmacology Approaches to Explore the Quality Control Markers for the Quality Assessment of Trifolium pratense L. Molecules, 25(17), 3787. doi: 10.3390/molecules25173787. DOI: https://doi.org/10.3390/molecules25173787
Monteiro-Alfredo T., Matafome P., Iacia B. P., Antunes K. Á., et al. (2020). Acrocomia aculeata (Jacq.) Lodd. ex Mart. Leaves Increase SIRT1 Levels and Improve Stress Resistance. Oxidative medicine and cellular longevity, 5238650. doi: 10.1155/2020/5238650. DOI: https://doi.org/10.1155/2020/5238650
Rathor L., & Pandey R. (2018). Age-induced diminution of free radicals by Boeravinone B in Caenorhabditis elegans. Experimental Gerontology, 111(1), 94–106. DOI: 10.1016/ j.exger.2018.07.005. DOI: https://doi.org/10.1016/j.exger.2018.07.005
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., & Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Roxo M., Peixoto H., Wetterauer P., Lima E., & Wink M. (2020). Piquiá Shells (Caryocar villosum): A Fruit by-Product with Antioxidant and Antiaging Properties in Caenorhabditis elegans. Oxidative medicine and cellular longevity, 7590707. doi: 10.1155/2020/7590707. DOI: https://doi.org/10.1155/2020/7590707
Sun Z. X., Liu S., Zhao Z. Q., & Su R. Q. (2014). Protective effect of chlorogenic acid against carbon tetrachloride-induced acute liver damage in rats. Chinese Herbal Medicines, 6(1), 36–41. doi: 10.1016/S1674-6384(14)60004-6. DOI: https://doi.org/10.1016/S1674-6384(14)60004-6
Tambara A. L., de Los Santos Moraes L., Dal Forno A. H., Boldori J. R., et al. (2018). Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food and Chemical Toxicology, 120, 639–650. doi: 10.1016/j.fct.2018.07.057. DOI: https://doi.org/10.1016/j.fct.2018.07.057
Thabit S., Handoussa H., Roxo M., Cestari de Azevedo B., El Sayed N., & Wink M. (2019). Styphnolobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models. Molecules, 24(14), 2633. doi: 10.3390/molecules24142633. DOI: https://doi.org/10.3390/molecules24142633
van der Pol A., van Gilst W. H., Voors A. A., & van der Meer P. (2019). Treating oxidative stress in heart failure: past, present and future. European Journal of Heart Failure, 21(4), 425–435. doi: 10.1002/ejhf.1320. DOI: https://doi.org/10.1002/ejhf.1320
Wang H., Liu J., Li T., & Liu R. H. (2018). Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food & Function, 9(10), 5273–5282. doi: 10.1039/c8fo01680a. DOI: https://doi.org/10.1039/C8FO01680A
Wang J., Deng N., Wang H., Li T., Chen L., Zheng B., & Liu R. H. (2020). Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules, 25(2), 351. doi: 10.3390/molecules25020351. DOI: https://doi.org/10.3390/molecules25020351
Wang S., Li Y., Meng X., Chen S., Huang D., Xia Y., Zhu S.
(2021). Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chemistry, 357, 129904. doi: 10.1016/j.foodchem.2021.129904. DOI: https://doi.org/10.1016/j.foodchem.2021.129904
Wilson M. A., Shukitt-Hale B., Kalt W., Ingram D. K., Joseph J. A., & Wolkow C. A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell, 5(1), 59-68. doi: 10.1111/j.1474-9726.2006.00192.x. DOI: https://doi.org/10.1111/j.1474-9726.2006.00192.x
Wu Q., Shen T., Liu F., & Zhang W. (2021). Biochanin A protects SH-SY5Y cells against isoflurane-induced neurotoxicity by suppressing oxidative stress and apoptosis. NeuroToxicology, 86, 10–18. https://doi.org/10.1016/j.neuro.2021.06.007. DOI: https://doi.org/10.1016/j.neuro.2021.06.007
Downloads
Published
How to Cite
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.