Improvement of crop and soil management practices through mulching for enhancement of soil fertility and environmental sustainability: A review
DOI:
https://doi.org/10.18006/2022.10(4).697.712Keywords:
Agriculture, Soil cover, Water scarcity, Soil nutrients, Soil moisture, Crop productionAbstract
The logarithmic phase of the human population creates high food demand near the future throughout the world. On the flip side, improved crop production requires uninterrupted water irrigation. Therefore, sensible agricultural inputs are needed to overcome these concerns. New technology-based innovative agronomic research steps will boost the contemporary agriculture practices in developed and developing countries. Agricultural cropping systems could follow mulching practices as one of the best crop management practices for its water and nutrient management potential. It is primarily to accomplish healthy economic and environmental bonds. By covering the soil's surface with biodegradable resources such as organic and inorganic materials, mulching improves the physicochemical characteristics of the soil. This approach provides a favorable environment for the development of plant growth and fosters the activities of microbial communities. Additionally, it reduces the growth of weeds, manages erosion, gets rid of pesticide residue, and increases soil fertility. Mulching the soil surface has profound benefits in improving the soil moisture levels due to a reduced evaporation rate. This method is a practical agronomic entrance to reduce water scarcity and raise the chance of water conservation, notably in arid and semiarid regions. It can also boost crop security and production to meet the global food requirements. This review significantly focuses on the current influence and advantages of organic mulches for crop establishment in the agriculture sector, which can close the production gap between achievable and actual yield.
References
Amare, G., & Desta, B. (2021). Coloured plastic mulches: impact on soil properties and crop productivity. Chemical Biological Technologies in Agriculture, 8(4), 1-9. https://doi.org/10.1186/ s40538-020-00201-8 DOI: https://doi.org/10.1186/s40538-020-00201-8
Anjali, S. (2021). Impact of organic and inorganic fertilizers on growth, yield and economics of garlic (Allium sativum L.). Annals of Plant and Soil Research, 23, 477-480. 10.47815/apsr.2021.10106. DOI: https://doi.org/10.47815/apsr.2021.10106
Antonious, G.F., & Kasperbauer, M.J. (2002). Color of light reflected to leaves modifies nutrient content of carrot roots. Crop Science, 42 (4), 1211–1216. https://doi.org/10.2135/ cropsci2002.1211 DOI: https://doi.org/10.2135/cropsci2002.1211
Barajas Guzman, M. G., Campo, J., & Barradas, V.L. (2006). Soil water, nutrient availability and sapling survival under organic and polyethylene mulch in a seasonally dry tropical forest. Plant and Soil, 287(1), 347-357. https://doi.org/10.1007/s11104-006-9082-7. DOI: https://doi.org/10.1007/s11104-006-9082-7
Barron, J., Rockström, J., Gichuki, F., & Hatibu, N. (2003). Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agricultural Forests Meteorology, 117(1-2), 23–37. https://doi.org/10.1016/S0168-1923(03)00037-6 DOI: https://doi.org/10.1016/S0168-1923(03)00037-6
Bender, I., Raudseping, M., & Vabrit, S. (2008). Effect of organic mulches on the growth of tomato plants and quality of fruits in organic cultivation. Proceedings of the International symposium on growing media. Acta Horticulturae, 779(1), 341-346. https://doi.org/10.17660/ActaHortic.2008.779.42 DOI: https://doi.org/10.17660/ActaHortic.2008.779.42
Biswas, S.K., Akanda, A.R., & Rahman, M.S. (2015). Hossain Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant Soil Environment, 61(3), 97–102. https://doi.org/ 10.17221/804/2014-PSE. DOI: https://doi.org/10.17221/804/2014-PSE
Biswas, T., Bandyopadhyay, P.K., Nandi, R., Mukherjee, S., et al. (2022). Impact of mulching and nutrients on soil water balance and actual evapotranspiration of irrigated winter cabbage (Brassica oleracea var. capitata L.), Agricultural Water Management, 263, 107456. https://doi.org/10.1016/j.agwat.2022.107456 DOI: https://doi.org/10.1016/j.agwat.2022.107456
Bilck, A.P., Grossmann, M.V.E., Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29 (4), 471-476. https://doi.org/10.1016/ j.polymertesting.2010.02.007 DOI: https://doi.org/10.1016/j.polymertesting.2010.02.007
Bogiani, J.C., Anton, C. S., Seleguini, A. Faria Junior, M.J.A., & Seno, S. (2008). Tip pruning, plant density and plastic mulching in tomato yield in protected cultivation. Bragantia, 67(1), 145-151. https://doi.org/10.1590/S0006-87052008000100018 DOI: https://doi.org/10.1590/S0006-87052008000100018
Branco R.B.F., Santos L.G.C., Goto, R., Ishimura, I., Schlickmann, S., & Chiarati, S. (2010). Successive organic cultivation of vegetable crops in two irrigation systems and two soil covers. Horticultura Brasileira, 28(1), 75-80. https://doi.org/10.1590/ S0102-05362010000100014 DOI: https://doi.org/10.1590/S0102-05362010000100014
Campagnol, R., Abrahao, C., Mello, S.C., Oviedi, V.R.S., & Minami, K. (2014). Impacts of irrigation levels and soil cover on tomato crop. Irrigation, 19(3), 345-357. https://doi.org/10.1590/ S0102-05362010000100014 DOI: https://doi.org/10.15809/irriga.2014v19n3p345
Chai, Q., Gan, Y., Turne, N.C., Zhang, R.Z., Yang, C., Niu, Y., & Siddique, K.H.M. (2014). Water-saving innovations in Chinese agriculture. Advances in Agronomy, 126, 149–201. https://doi.org/ 10.1016/B978-0-12-800132-5.00002-X DOI: https://doi.org/10.1016/B978-0-12-800132-5.00002-X
Chakraborty, B., Kundu, M., & Chattopadhyay, R.N. (2016). Organic farming with bio-mulching–a new paradigm for sustainable leaf yield and quality of mulberry (Morus Alba L.) under rainfed lateritic soil condition. International Conference on Inventions & Innovations for Sustainable Agriculture 2016, ICIISA. Agriculture and Agricultural Science Procedia, 11, 31-37. https://doi.org/10.1016/j.aaspro.2016.12.006 DOI: https://doi.org/10.1016/j.aaspro.2016.12.006
Chakraborty, R.C., & Sadhu, M.K. (1994). Effect of mulch type and color on growth and yield of tomato (Lycopersicon esculentum). Indian Journal of Agricultural Science, 64(9), 608–612. http://dx.doi.org/10.46609/IJAER.2020.v06i01.007. DOI: https://doi.org/10.46609/IJAER.2020.v06i01.007
Chalker-Scott, L. (2007). Impact of mulches on landscape plants and the environment- a review. Journal of Environmental Horticulture, 25(4), 239-249. https://doi.org/10.24266/0738-2898-25.4.239 DOI: https://doi.org/10.24266/0738-2898-25.4.239
Chaudhry, M.R., Aziz A.M., & Sidh, M. (2004). Mulching Impact on Moisture Conservation ─ Soil Properties and Plant Growth. Pakistan Journal of Water Research, 8(2),1-8.
Chaves, S.W.P., Coelho, R.D., Costa, J.D.O., & Tapparo, S. A. (2021). Vegetative and productive responses of tabasco pepper to fertigation and plastic mulching. Scientia Agricola, 79(5), 10. https://doi.org/10.1590/1678-992x-2021-0084 DOI: https://doi.org/10.1590/1678-992x-2021-0084
Chen, Y., Liu, T., Tian, X., Wang, X., Li, M., Wang, S., & Wang, X. (2015). Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Research, 172, 53-58. https://doi.org/ 10.1016/j.fcr.2014.11.016 DOI: https://doi.org/10.1016/j.fcr.2014.11.016
Coventry, J.M., Fisher, K.H., Strommer, J.N., & Reynolds, A.G. (2003). Reflective mulch to enhance berry quality in Ontario wine grapes. VII International Symposium on Grapevine Physiology and Biotechnology. Acta Horticulture, 689, 95-102. http://dx.doi.org/10.17660/ActaHortic.2005.689.7 DOI: https://doi.org/10.17660/ActaHortic.2005.689.7
Dahal, B.R., Rijal, S., Poudel, N., Gautam, B., & Neupane, R. B. (2020). Influence of different bio-pesticides and mulching in management of Okra Jassids Amrasca biguttula biguttula (Hemiptera: Cicadellidae) in Chitwan district of Nepal. Cogent Food and Agriculture, 6(1), 1-9. http://dx.doi.org/10.1080/ 23311932.2020.1829271 DOI: https://doi.org/10.1080/23311932.2020.1829271
Elsayed-Farag, S., Anciso, J., Marconi, C., Avila, C., Rodriguez, A., Badillo-Vargas, I. E. & Enciso, J. (2018). Appropriate planting dates and plastic mulch for increasing common tomato varieties yield in south texas. Agricultural Research, 13 (26), 1349-1357. http://dx.doi.org/10.5897/AJAR2018.13212 DOI: https://doi.org/10.5897/AJAR2018.13212
Frédéric, T., Katrine, A.S. & Philippe, S. (2009). Use of Perennial Legumes Living Mulches and Green Manures for the Fertilization of Organic Broccoli, International Journal of Vegetable Science, 15(2), 142-157. https://doi.org/10.1080/19315260802598896 DOI: https://doi.org/10.1080/19315260802598896
Gan, Y., Siddique, K.H.M., Turner, N.C., Li, X.G., Niu, J.Y., Yang, C., Liu, L., & Chai, Q. (2013). Ridge-Furrow mulching systems – an innovative technique for boosting crop productivity in semiarid rain-fed environments. Advanced Agronomy, 118, 429-476. http://dx.doi.org/10.1016/B978-0-12-405942-9.00007-4 DOI: https://doi.org/10.1016/B978-0-12-405942-9.00007-4
Ghimire, R., Lamichhane, S., Acharya, B.S., Bista, P., & Sainju, U.M. (2017). Tillage, crop residue and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrated Agriculture, 16(1), 1-15. https://doi.org/10.1016/S2095-3119(16)61337-0. DOI: https://doi.org/10.1016/S2095-3119(16)61337-0
Ghosh, P.K., Devi, D., Bandyopadhyay, K.K., & Mohanty, M. (2006). Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut, Field Crops Research, 99(2–3), 76-86. https://doi.org/10.1016/j.fcr.2006.03.004 DOI: https://doi.org/10.1016/j.fcr.2006.03.004
Haapala, T., Palonen, P., Korpela, A., & Ahokas, J. (2014). Feasibility of paper mulches in crop production: A review. Agriculture and Food Science, 23 (1), 60–79. https://doi.org/10.23986/afsci.8542 DOI: https://doi.org/10.23986/afsci.8542
Hanjra, M.A., & Qureshi, M.E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35 (5), 365–377. https://doi.org/10.1016/j.foodpol.2010.05.006. DOI: https://doi.org/10.1016/j.foodpol.2010.05.006
Haribowo, R., Asmaranto, R., & Kusuma, L.T.W.N. (2021). Effect of rice straw mulch on surface runoff and soil loss in agricultural land under simulated rainfall. IOP Conference Series: Earth and Environmental Science, 930(1), 012007. https://doi.org/10.1088/ 1755-1315/930/1/012007 DOI: https://doi.org/10.1088/1755-1315/930/1/012007
Hatfield, J. L., Sauer, T. J., & Prueger, J. H. (2001). Managing soils to achieve greater water use efficiency. Agronomy Journal, 93(2), 271–280. https://doi.org/10.2134/agronj2001.932271x DOI: https://doi.org/10.2134/agronj2001.932271x
Hussain, I., & Hamid, H. (2003). Plastics in agriculture. In: A.L. Andrady (ed). Plastics and the environment (Pp.185–209). Wiley, Hoboken. DOI: https://doi.org/10.1002/0471721557.ch5
Ingman, M., Santelmann, M.V., & Tilt, B. (2015). Agricultural water conservation in china: plastic mulch and traditional irrigation. Ecosystem Health and Sustainability, 1(4), 1-11. https://doi.org/10.1890/EHS14-0018.1 DOI: https://doi.org/10.1890/EHS14-0018.1
Iqbal, R., Raza, M.A.S., Saleem, M.F., Khan, I.H., et al. (2019). Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. Journal of Arid Lands, 11 (5), 785-794. https://doi.org/10.1007/s40333-019-0014-9. DOI: https://doi.org/10.1007/s40333-019-0014-9
Irshad, M., Ullah, F., Fahad, S. Mehmood, S., et al. (2021). Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biology, 21(1), 303. https://doi.org/10.1186/s12870-021-03097-0 DOI: https://doi.org/10.1186/s12870-021-03097-0
Jabran, K., Ullah, E., Hussain, M., Farooq, M., Zaman, U., Yaseen, M., & Chauhan, B.S. (2014). Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. Journal of Agronomy and Crop Science, 201(5), 389-400. http://dx.doi.org/10.1111/jac.12099 DOI: https://doi.org/10.1111/jac.12099
Johansson, K., Orlander, G., & Nilsson, U. (2006). Effects of mulching and insecticides on establishment and growth of Norway spruce. Canadian Journal of Forest Research, 36(10), 2377-2385. http://dx.doi.org/10.1139/x06-121 DOI: https://doi.org/10.1139/x06-121
Kader, M.A., Senge, M., Mojid, M.A., & Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Research, 168(5), 155-166. http://dx.doi.org/10.1016/j.still.2017.01.001 DOI: https://doi.org/10.1016/j.still.2017.01.001
Kader, M.A., Singha, A., Begum, M.A., Jewel, A., Khan F.H., & Khan, N. (2019). Mulching as water-saving technique in dry land agriculture. Bulletin of the National Research Centre, 43, 147. https://doi.org/10.1186/s42269-019-0186-7. DOI: https://doi.org/10.1186/s42269-019-0186-7
Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradeable mulches agricultural applications: A review. Agronomy Sustainable Development, 32(2), 501-529. http://dx.doi.org/10.1007%2Fs13593-011-0068-3 DOI: https://doi.org/10.1007/s13593-011-0068-3
Kasperbauer, M.J., & Loughrin, J.H. (2004). Crop ecology, management and quality: butterbean seed yield, color, and protein content are affected by photomorphogenesis. Crop Science, 44(6), 2123–2126. http://dx.doi.org/10.2135/cropsci2004.2123 DOI: https://doi.org/10.2135/cropsci2004.2123
Khan, H., Kaur, S., Baldwin, T. C., Radecka, I., et al. (2020). Effective control against broadleaf weed species provided by biodegradable PBAT/PLA mulch film embedded with the Herbicide 2-Methyl-4-Chlorophenoxyacetic Acid (MCPA). ACS Sustainable Chemistry and Engineering, 8(13), 5360-5370. https://doi.org/10.1021/acssuschemeng.0c00991 DOI: https://doi.org/10.1021/acssuschemeng.0c00991
Kim, E.J., Choi, D.G., & Jin, S.N. (2008). Effect of pre-harvest reflective mulch on growth and fruit of plum (Prunus domestica L.). XXVII International Horticultural Congress—IHC2006: International Symposium on Enhancing Economic and Environmental Sustainability of Fruit Production in a Global Economy. Acta Horticulturae, 772, 323-326. http://dx.doi.org/ 10.17660/ActaHortic.2008.772.54 DOI: https://doi.org/10.17660/ActaHortic.2008.772.54
Kwabiah, A.B. (2004). Growth and yield of sweet corn (Zea mays L.) cultivars in response to planting date and plastic mulch in a short season environment. Scientia Horiculturae, 102(2), 147–166. http://dx.doi.org/10.1016/j.scienta.2004.01.007 DOI: https://doi.org/10.1016/j.scienta.2004.01.007
Kwiecien, I., Adamus, G., Jiang, G., Radecka, I., et al. (2018). Biodegradable PBAT/PLA blend with bioactive MCPA-PHBV conjugate suppresses weed growth. Biomacromolecules, 19(2), 511-520. http://dx.doi.org/10.1021/acs.biomac.7b01636 DOI: https://doi.org/10.1021/acs.biomac.7b01636
Lalitha, M., Thilagam, V.K., Balakrishnan, N., & Monsour, M. (2010). Effect of plastic mulch on soil properties and crop growth- A Review. Agricultural Reviews, 31 (2), 145-149. https://arccjournals.com/journal/agricultural-reviews/ARCC1349
Lamont, W. (2004). Plastic mulches. In: W. Lamont (ed) Production of vegetables, strawberries, and cut flowers using plasticulture. Natural Resource, Agriculture, and Engineering Service (NRAES-133), Ithaca. Pp. 65. https://hdl.handle.net/1813/69448
Lamont, W.J. (1999). Bulletin on vegetable production using plasticulture. Tapei City, Republic of China on Taiwan: Food and Fertilizer Centre. Pp. 1-9. https://www.fftc.org.tw/htmlarea_file/ library/20110808093747/eb476.pdf
Lamont, W.J. (2005). Plastics: modifying the microclimate for the production of vegetable crops. Horticulture Technology, 15(3), 477–481. https://doi.org/10.21273/horttech.15.3.0477 DOI: https://doi.org/10.21273/HORTTECH.15.3.0477
Lee, J.G., Chae, H.G., Cho, S.R., Song, H.J., Kim, P.J., & Jeong, S.T. (2021). Impact of plastic film mulching on global warming in entire chemical and organic cropping systems: life cycle assessment. Journal of Cleaner Production, 308, 12, 7256. https://doi.org/10.1016/j.jclepro.2021.127256 DOI: https://doi.org/10.1016/j.jclepro.2021.127256
Lewis, D.G., Cutulle, M.A., Schmidt-Jeffris, R.A., & Blubaugh, C.K. (2020). Better together? combining cover crop mulches, organic herbicides, and weed seed biological control in reduced-tillage Systems. Environmental Entomology, 49(4), 1327-1334. http://dx.doi.org/10.1093/ee/nvaa105 DOI: https://doi.org/10.1093/ee/nvaa105
Li, C., Wang, Q., Wang, N., Luo, X., Li, Y., Zhang, T., Feng, H., & Dong, Q. (2021). Effects of different plastic film mulching on soil hydrothermal conditions and grain-filling process in an arid irrigation district. The Science of the Total Environment, 795, 148886. https://doi.org/10.1016/j.scitotenv.2021.148886 DOI: https://doi.org/10.1016/j.scitotenv.2021.148886
Li, C., Wang., C, Wen, X., Qin, X., et al. (2017). Ridge-furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat-maize double-cropping system in dry semi-humid areas. Field Crops Research, 203, 201-211. http://dx.doi.org/10.1016/j.fcr.2016.12.029 DOI: https://doi.org/10.1016/j.fcr.2016.12.029
Liu, L., Hu, C., Yang, P., Ju, Z., Olesen, J.E., & Tang, J. (2015). Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow. Agricultural Forests Meteorology, 207(1), 38–47. http://dx.doi.org/10.1016/j.agrformet.2015.03.013 DOI: https://doi.org/10.1016/j.agrformet.2015.03.013
Molla, A., Desta, G., Molla, G. A., Desta, G., & Dananto, M. (2022). Soil management and crop practice effect on soil water infiltration and soil water storage in the humid lowlands of Beles Sub-Basin, Ethiopia Getnet Soil Management and Crop Practice Effect on Soil Water Infiltration and Soil Water Storage in the Humid L. Hydrology, 10(1), 1–11. https://doi.org/10.11648/ j.hyd.20221001.11 DOI: https://doi.org/10.11648/j.hyd.20221001.11
Muhammad, S., Israr, H., Rab, A., Jan, I., Fazal, I.W., Shah, T., & Khan, I. (2013). Influence of organic mulches on growth and yield components of pea’s cultivars. Greener Journal of Agricultural Sciences. 3(8), 652-657. http://dx.doi.org/10.15580/ GJAS.2013.3.122912351 DOI: https://doi.org/10.15580/GJAS.2013.3.122912351
Ngangom, B., Das A., Lal, R., Idapuganti, R.G., et al. (2020). Double mulching improves soil properties and productivity of maize-based cropping system in eastern Indian Himalayas. International Soil and Water Conservation Research, 8(3), 308-320. http://dx.doi.org/10.1016/j.iswcr.2020.07.001 DOI: https://doi.org/10.1016/j.iswcr.2020.07.001
Ngouajio, M., Goldy, R., Zandstra, B., & Warncke, D. (2007). Plasticulture for Michigan Vegetable Production. Extension Bulletin E-2980 January 2007. Michigan State University, East Lansing, pp 20. https://archive.lib.msu.edu/DMC/ extension_publications/e2980/E2980-2007.PDF
Niu, J.Y., Gan, Y.T., & Huang, G.B. (2004). Dynamics of root growth in spring wheat mulched with plastic film. Crop Science, 44(5), 1682–1688. http://dx.doi.org/10.2135/cropsci2004.1682 DOI: https://doi.org/10.2135/cropsci2004.1682
Oliveira, J.C.M., Timm, L.C., Tominaga, T.T., Cassaro, F.A.M., et al. (2001). Soil temperature in a sugar-cane crop as a function of the management system. Plant and Soil, 230(1), 61–66. http://dx.doi.org/10.1023/A:1004820119399 DOI: https://doi.org/10.1023/A:1004820119399
Ossomi, E. M., Pace, P. F., Rhykerd, R. L., & Rhykerd, C. L. (2001). Effect of mulch on weed infestation, soil temperature, nutrient concentration, and tuber yield in Ipomoea batatus (L.) Lam. In Papua New Guinea. Tropical Agriculture (Trinidad), 78(3), 144–151.
Patil, S., Kelkar-Tushar, S., & Bhalerao, S. (2013). Mulching: A Soil and water conservation practice. Research Journal of Agriculture and Forestry Sciences, 1(3), 26–29.
Qin, W., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific Reports, 5, 16210. http://dx.doi.org/10.1038/srep16210 DOI: https://doi.org/10.1038/srep16210
Ramakrishna, A., Hoang, M.T., Suhas, P.W., & Tranh, D.L. (2006). Effect on mulch on soil temperature, moisture, weed infestation and yield of groundnut in North Vietnam. Field Crops Research, 95(2-3), 115-125. http://doi.org/ 10.1016/j.fcr.2005.01.030 DOI: https://doi.org/10.1016/j.fcr.2005.01.030
Ramos, L., Berenstein, G., Hughes, E. A., Zalts, A., & Montserrat, J. M. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science Total Environment, 523, 74–81. http://doi.org/ 10.1016/j. scitotenv.2015.03.142 DOI: https://doi.org/10.1016/j.scitotenv.2015.03.142
Rangarajan, A., & Ingall, B., (2001). Mulch color effects radicchio quality and yield. Horticultural Science, 36(7), 1240–1243. https://doi.org/10.21273/HORTSCI.36.7.1240 DOI: https://doi.org/10.21273/HORTSCI.36.7.1240
Ranjan, P., Patle, G. T., Prem, M., & Solanke, K R. (2017). Organic Mulching - A Water saving technique to increase the production of fruits and vegetables. Current Agricultural Research Journal, 5(3), 371- 380. http://dx.doi.org/10.12944/CARJ.5.3.17. DOI: https://doi.org/10.12944/CARJ.5.3.17
Ren, X., Chen, X., & Jia, Z. (2009). Ridge and furrow method of rainfall concentration for fertilizer use efficiency in farmland under semiarid conditions. Applied Engineering Agriculture, 25 (6), 905–9130. DOI: https://doi.org/10.13031/2013.29239
Rui, L., Qinggui, L., & Lidong, P. (2020). Review of organic mulching effects on soil and water loss. Archives of Agronomy and Soil Science, 67(1), 136-151. https://doi.org/10.1080/ 03650340.2020.1718111. DOI: https://doi.org/10.1080/03650340.2020.1718111
Ruiz, J.M., Hernandez, J., Castilla, N., & Luis, R. (2002). Effect of soil temperature on K and Ca concentrations on ATPase and pyruvate kinase activity in potato roots. Horticultural Science, 37(2), 325–328. https://doi.org/10.21273/HORTSCI.37.2.325 DOI: https://doi.org/10.21273/HORTSCI.37.2.325
Sardans, J., & Penuelas, J. (2004). Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant and Soil, 267(1-2), 367–377. https://doi.org/10.1007/s11104-005-0172-8 DOI: https://doi.org/10.1007/s11104-005-0172-8
Schimel, D.S. (2010). Drylands in the earth system. Science, 327, 418–419. https://doi.org/10.1126/science.1184946. DOI: https://doi.org/10.1126/science.1184946
Serrano-Ruiz, H., Martín-Closas, L., & Pelacho, A. (2021). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment, 750, 141228 10.1016/j.scitotenv.2020.141228. DOI: https://doi.org/10.1016/j.scitotenv.2020.141228
Silva, A. C. C. D., Nascimento, J. M. S. D., Diotto, A. V., Lima, L.A., & Oliveira, M.C.D. (2019). Yield in tomato under two water depths and plastic mulching. Revista Brasileira de Ciencias Agrarias, 14 (3), 1-6. https://doi.org/10.14295/CS.v12.3779. DOI: https://doi.org/10.5039/agraria.v14i3a5664
Singh, G., & Singh, S. K. (2019). Effect of bio-fertilizer and mulching on growth, yield and quality of cauliflower (Brassica oleracea var. botrytis L.) in Punjab. Journal of Crop and Weed, 15(1), 182-185. https://www.cabdirect.org/cabdirect/abstract/ 20183080306
Singh, S.K., Raturi, H.C., & Kumar, R. (2017). Effect of different mulches and biofertilizers on qualitative and quantitative attributes of tomato. Journal of Plant Development Sciences, 9(11), 999-1005. https://www.cabdirect.org/cabdirect/abstract/20183080306
Sreejata, B., Martin-Closas, L., Pelacho, A.M., & DeBruyn, J.M. (2018). Biodegradable Plastic Mulch Films: Impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology, 9, 819. https://doi.org/10.3389/fmicb.2018.00819 DOI: https://doi.org/10.3389/fmicb.2018.00819
Sumathi, C.S. (2010). Development of sustainable crop improvement strategies through microbial bioinoculants application in turmeric (Curcuma longa L.) plantation. Unpublished Ph.D., thesis submitted to the Bharathidasan University, Trichy, India. Pp: 35
Sumathi, C.S., Mahalakshmi, P., & Rajesh, P. (2021). Impact of mycorrhizal soil fertility proteins and Arbuscular mycorrhizal application to combat drought stress in maize plants. Journal of Plant Biochemistry and Biotechnology, 30(4), 906–917. http://dx.doi.org/10.1007/s13562-021-00745-2 DOI: https://doi.org/10.1007/s13562-021-00745-2
Suresh Kumar, J., Nedunchezhiyan, M., & Sunitha S. (2021). Weed control approaches for tropical tuber crops - A review. International Journal of Vegetable Science, 27(5), 439-455. https://doi.org/10.1080/19315260.2020.1839156 DOI: https://doi.org/10.1080/19315260.2020.1839156
Surya, J.N., Puranik, J.B., Zadode, S.D., & Deshmukh, S.D. (2000), Effect of wheat straw incorporation on yield of green gram and wheat, soil fertility and microbiota. Journal of Maharastra Agricultural University, 25(2), 158-160.
Tarara, J.M. (2000). Microclimate modification with plastic mulch. Horticultural Science, 35(2), 222–228. DOI: https://doi.org/10.21273/HORTSCI.35.2.169
Teame, G., Tsegay, A., & Abrha, B. (2017). Effect of organic mulching on soil moisture, yield, and yield contributing components of sesame (Sesamum indicum L.). International Journal of Agronomy, 6, 1-6. http://dx.doi.org/10.1155/ 2017/4767509 DOI: https://doi.org/10.1155/2017/4767509
Tiquia, S.M., Wan, J.H.C., & Tam, N.F.Y. (2002) Microbial population dynamics and enzyme activities during composting. Compost Science Utilization, 10(2), 150–161. https://doi.org/ 10.1080/1065657X.2002.10702075 DOI: https://doi.org/10.1080/1065657X.2002.10702075
Uhlirova, E., Simek, M., & Santruckova, H. (2005). Microbial transformation of organic matter in soils of montane grasslands under different management. Applied Soil Ecology, 28 (3), 225-235. https://doi.org/10.1016/j.apsoil.2004.08.002. DOI: https://doi.org/10.1016/j.apsoil.2004.08.002
Wang Y.P., Xiao G.L., Taotao, F., Lin, W., Neil, C. T., Kadambot H.M. S., & Feng-Min, L. (2016). Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural Forest Meteorology, 228–229, 42–51. https://doi.org/10.1016/j.agrformet.2016.06.016 DOI: https://doi.org/10.1016/j.agrformet.2016.06.016
Wang, Y., Liu, L., Luo, Y., Awasthi, M.K., et al. (2020). Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system. The Science of the Total Environment, 725, 138527. https://doi.org/10.1016/ j.scitotenv.2020.138527 DOI: https://doi.org/10.1016/j.scitotenv.2020.138527
Wang, Z., Li, M., Flury, M., Schaeffer, S.M., Chang, Y., Tao, Z., & Wang, J. (2021). Agronomic performance of polyethylene and biodegradable plastic film mulches in a maize cropping system in a humid continental climate. The Science of the Total Environment, 786, 147460. https://doi.org/10.1016/j.scitotenv.2021.147460 DOI: https://doi.org/10.1016/j.scitotenv.2021.147460
Waterer, D. (2010). Evaluation of biodegradable mulches for production of warm season vegetable crops. Canadian Journal of Plant Science, 90(5), 737–743. http://dx.doi.org/10.4141/CJPS10031 DOI: https://doi.org/10.4141/CJPS10031
World Bank. (2002). Agenda for water sector strategy for north china (Number 22040- CHA). World Bank/ Rural Development and Natural Resources Unit, Beijing, China.
Wu, C., Yajie, M., Dan, W., Yongpan, S., et al. (2022). Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. Journal of Hazardous Materials, 423, Part B, 127258, https://doi.org/10.1016/j.jhazmat.2021.127258 DOI: https://doi.org/10.1016/j.jhazmat.2021.127258
Xu, D., Ling, J., Qiao, F., Fang, Q., et al. (2022). Organic mulch can suppress litchi downy blight through modification of soil microbial community structure and functional potentials. BMC Microbiology, 22, 155. https://doi.org/10.1186/s12866-022-02492-3 DOI: https://doi.org/10.1186/s12866-022-02492-3
Yaghi, T., Arslan, A., & Naoum, F. (2013). Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agricultural Water Management, 128, 149-157. http://dx.doi.org/10.1016/j.agwat.2013.06.002 DOI: https://doi.org/10.1016/j.agwat.2013.06.002
Yaşar, S., & Şahin, H. (2021). The effects of mulching with organic materials on the soil nutrient and carbon transport by runoff under simulated rainfall conditions. Journal of African Earth Sciences, 176, 104152. https://doi.org/10.1016/j.jafrearsci.2021.104152 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104152
Yin, H., Xiao, J., Li, Y., Chen, Z., Cheng, X., Zhao, C., & Liu, Q. (2013). Warming effects on root morphological and physiological traits: the potential consequences on soil C dynamics as altered root exudation. Agricultural Forests Meteorology, 180, 287–296. https://doi.org/10.1016/j.agrformet.2013.06.016 DOI: https://doi.org/10.1016/j.agrformet.2013.06.016
Yin, W., Chai, Q., Guo, Y., Fan, H., et al. (2021). No tillage with plastic re-mulching maintains high maize productivity via regulating hydrothermal effects in an arid region. Frontiers in plant science, 12, 649684. http://dx.doi.org/10.3389/fpls.2021.649684 DOI: https://doi.org/10.3389/fpls.2021.649684
Yu, Y.Y., Turner, N., Gong, Y., Li, F.M., Fang, C., Ge, Li, J., & Ye, J. (2018). Benefits and limitations to straw- and plastic-film
mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. European Journal of Agronomy, 99, 138- http://dx.doi.org/10.1016/j.eja.2018.07.005 DOI: https://doi.org/10.1016/j.eja.2018.07.005
Yuan, Y., Zu, M., Zuo, J., Jiajia, Z., Runze, L., & Jun, T. (2022). What will polyethylene film mulching bring to the root-associated microbial community of Paeonia ostii? Applied Microbiology Biotechnology, 106, 4737–4748. https://doi.org/10.1007/s00253-022-11986-z DOI: https://doi.org/10.1007/s00253-022-11986-z
Zhang, J., Sun, J., Duan, A., Wang, J., Shen, X., & Liu, X. (2007). Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agricultural Water Management, 92 (1), 41–47. https://doi.org/10.1016/j.agwat.2007.04.007 DOI: https://doi.org/10.1016/j.agwat.2007.04.007
Zhang, P., Wei, T., Cai, T., Ali, S., Han, Q., Ren, X., & Jia, Z. (2017). Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China. Frontiers in Plant Science, 8, 512. https://doi.org/10.3389/ fpls.2017.00512 DOI: https://doi.org/10.3389/fpls.2017.00512
Zhang, S., Wang, Y., Sun, L., Qiu, C., et al. (2020). Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiology, 20, 103. https://doi.org/10.1186/s12866-020-01794-8 DOI: https://doi.org/10.1186/s12866-020-01794-8
Zhu, L., Liu, J., Luo, S., Bu, L., Chen, X., & Li, S. (2015). Soil mulching can mitigate soil water deficiency impacts on rainfed maize production in semiarid environments. Journal of Integrative Agriculture, 14 (1), 58–66. https://doi.org/10.1016/S2095-3119(14)60845-5 DOI: https://doi.org/10.1016/S2095-3119(14)60845-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.