Ameliorating Direct Blue Dye Degradation Using Trametes versicolor Derived Laccase Enzyme Optimized through Box–Behnken Design (BBD) via Submerged Fermentation

Authors

  • Umamaheswari Ramaswamy Department of Microbiology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal, India
  • Ramkumar Lakshmanan Department of Microbiology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal, India
  • Mythili Ravichandran Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankari, Namakkal, India
  • Prabu Periasamy Department of Biotechnology, Periyar University PG Extension Center, Dharmapuri, India
  • Shanmugam Sengodan Department of Microbiology, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal, India

DOI:

https://doi.org/10.18006/2022.10(4).818.830

Keywords:

Laccase, Trametes versicolor, Fruit peels, Dye decolorization, Box-Behnken design

Abstract

The major intend of this study was to elucidate the laccase production by Trametes versicolor under submerged fermentation using fruit waste peel as substrate. The textile dye was decolorized by the procured crude enzymatic extract using the response surface methodology. The submerged media with organic fruit peel waste extract (jackfruit, pineapple & kaffir) supplemented with gypsum, calcium carbonate, and nutrient broth were considered superior for laccase production. The produced laccase enzyme was used in dye decolorization at the optimum conditions using the Box-Behnken design. Subsequently, the experiment was designed with four variables (dye concentration, pH, temperature & time) with three factors to achieve the maximum direct blue dye decolorization. The highest laccase activity level was obtained from jackfruit peel extract with 3.86U/ml on 15th day at 25oC with pH 5.0 when compared to the other two extracts. The maximum laccase activity with guaiacol was obtained at optimum pH 4 and 40oC. The predicted value was experimentally validated by attaining 81.25% of dye color removal. From the result, the optimum conditions for direct blue color removal were: dye concentration 40ppm, pH 4.0, temperature 40oC at 24 hours. From the results of this study, it was concluded that the jack fruit peel was a more suitable substrate for laccase production. The dye decolorization results were recommended that Box-Behnken design for parameters optimization. The T. versicolor laccase was more proficient for textile dye decolorization. The opportunity was created by using the laccase enzyme for the biological treatment of textile dyeing effluent before discharging into the environment.

References

Agustin, M. B., de Carvalho, D. M., Lahtinen, M. H., Hilden, K., Lundell, T., & Mikkonen, K. S. (2021). Laccase as a Tool in Building Advanced Lignin‐Based Materials. ChemSusChem, 14(21), 4615-4635. DOI: https://doi.org/10.1002/cssc.202101169 DOI: https://doi.org/10.1002/cssc.202101169

Akar, S.T., Koc, E., Sayin, F., Kara, I., & Akar, T. (2021). Design and modeling of the decolorization characteristics of a regenerable and eco-friendly geopolymer: Batch and dynamic flow mode treatment aspects. Journal of Environmental Management, 298, 113548. DOI: https://doi.org/10.1016/j.jenvman.2021.113548 DOI: https://doi.org/10.1016/j.jenvman.2021.113548

Ali, L., Algaithi, R., Habib, H.M., Souka, U., Rauf, M.A.,& Ashraf, S.S. (2013). Soybean peroxidase-mediated degradation of an azo dye–a detailed mechanistic study. BMC biochemistry,14, 1-14. DOI: https://doi.org/10.1186/1471-2091-14-35

Amari, A., Alzahrani, F. M., Alsaiari, N. S., Katubi, K. M., Rebah, F. B., & Tahoon, M. A. (2021). Magnetic metal organic framework immobilized laccase for wastewater decolorization. Processes, 9(5), 774. DOI: https://doi.org/10.3390/pr9050774 DOI: https://doi.org/10.3390/pr9050774

Backes, E., Kato, C.G., da Silva, T.B., Uber, T.M., Pasquarelli, D.L., Bracht, A., & Peralta, R.M. (2022). Production of fungal laccase on pineapple waste and application in detoxification of malachite green. Journal of Environmental Science and Health, Part B, 57(2), 90-101. DOI: https://doi.org/10.1080/ 03601234.2022.2025739 DOI: https://doi.org/10.1080/03601234.2022.2025739

Backes, E., Kato-Schwartz, C.G., Corrêa, R.C.G., Moreira, R.d.F.P.M., et al. (2021). Laccases in food processing: Current status, bottlenecks and perspectives. Trends in Food Science & Technology, 115, 445-60.DOI: https://doi.org/10.1016/j.tifs.2021.06.052 DOI: https://doi.org/10.1016/j.tifs.2021.06.052

Barathi, S.,Aruljothi, K.N., Karthik, C., Padikasan, I.A., & Ashokkumar, V. (2022). Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere, 286, 131914. DOI: https://doi.org/10.1016/ j.chemosphere.2021.131914 DOI: https://doi.org/10.1016/j.chemosphere.2021.131914

Bayramoglu, M., Eyvaz, M., & Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation: economical evaluation. Chemical Engineering Journal, 128, 155-161. DOI: https://doi.org/10.1016/j.cej.2006.10.008 DOI: https://doi.org/10.1016/j.cej.2006.10.008

Becker, D., Rodriguez-Mozaz, S., Insa, S., Schoevaart, R., et al. (2017). Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Organic Process Research & Development, 21, 480-491. DOI: https://doi.org/ 10.1021/acs.oprd.6b00361 DOI: https://doi.org/10.1021/acs.oprd.6b00361

Birhanlı, E., Noma, S.A.A., Boran, F., Ulu, A., Yeşilada, Ö., & Ateş, B. (2022). Design of laccase–metal–organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere, 292, 133382. DOI: https://doi.org/10.1016/ j.chemosphere.2021.133382 DOI: https://doi.org/10.1016/j.chemosphere.2021.133382

Braunschmid, V., Binder, K., Fuerst, S., Subagia, R., Danner, C., Weber, H., & Guebitz, G. M. (2021). Comparison of a fungal and a bacterial laccase for lignosulfonate polymerization. Process Biochemistry, 109, 207-213. DOI: https://doi.org/10.1016/ j.procbio.2021.07.001 DOI: https://doi.org/10.1016/j.procbio.2021.07.001

Cescon, A., & Jiang, J. Q. (2020). Filtration process and alternative filter media material in water treatment. Water, 12(12), 3377. DOI: http://dx.doi.org/10.3390/w12123377 DOI: https://doi.org/10.3390/w12123377

Cordova-Villegas, L.G., Cordova-Villegas, A.Y., Taylor, K.E., & Biswas, N. (2019). Response surface methodology for optimization of enzyme-catalyzed azo dye decolorization. Journal of Environmental Engineering,145(5), 04019013. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001513

Coria-Oriundo, L.L., Battaglini, F., & Wirth, S.A. (2021). Efficient decolorization of recalcitrant dyes at neutral/alkaline pH by a new bacterial laccase-mediator system. Ecotoxicology and Environmental Safety, 217, 112237. DOI: https://doi.org/10.1016/ j.ecoenv.2021.112237 DOI: https://doi.org/10.1016/j.ecoenv.2021.112237

Crawford, S.E., Brinkmann, M., Ouellet, J.D., Lehmkuhl, F., Reicherter, K., Schwarzbauer, J., & Hollert, H. (2022). Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. Journal of hazardous materials, 421, 126691. DOI: https://doi.org/10.1016/ j.jhazmat.2021.126691 DOI: https://doi.org/10.1016/j.jhazmat.2021.126691

Darvishi, F., Moradi, M., Jolivalt, C., & Madzak, C. (2018). Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotoxicology and environmental safety,165, 278-283. DOI: https://doi.org/10.1016/j.ecoenv.2018.09.026 DOI: https://doi.org/10.1016/j.ecoenv.2018.09.026

de Boer, S., González-Rodríguez, J., Conde, J.J., & Moreira, M. T. (2022). Benchmarking tertiary water treatments for the removal of micropollutants and pathogens based on operational and sustainability criteria. Journal of Water Process Engineering, 46, 102587. DOI:https://doi.org/10.1016/j.jwpe.2022.102587 DOI: https://doi.org/10.1016/j.jwpe.2022.102587

Desai, S.S., Tennali, G.B., Channur, N., Anup, A., Deshpande, G., & Murtuza, B.A. (2011). Isolation of laccase producing fungi and partial characterization of laccase. Biotechnol Bioinf Bioeng, 1, 543-549.

Dos Santos Bazanella, G.C., de Souza, D.F., Castoldi, R., Oliveira, R.F., Bracht, A., & Peralta, R.M. (2013). Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization. Folia microbiologica, 58, 641-647. DOI: https://doi.org/10.1007/s12223-013-0253-7

Freitas, L. C., Barbosa, J. R., da Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H., & de Carvalho Junior, R. N. (2021). From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resources, Conservation and Recycling, 169, 105466. DOI: https://doi.org/10.1016/ j.resconrec.2021.105466 DOI: https://doi.org/10.1016/j.resconrec.2021.105466

Garzillo, A.M.V., Di Paolo, S., Burla, G., & Buonocore, V. (1992). Differently-induced extracellular phenol oxidases from Pleurotus ostreatus. Phytochemistry, 31, 3685-3690. DOI: https://doi.org/ 10.1016/S0031-9422(00)97509-5 DOI: https://doi.org/10.1016/S0031-9422(00)97509-5

Hafshejani, M.K., Ogugbue, C.J., & Morad, N. (2014). Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotech, 4(6), 605-619. DOI: https://doi.org/10.1007/s13205-013-0192-7

Hou, H., Zhou, J., Wang, J., Du, C., & Yan B. (2004). Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry, 39(11), 1415-1419.DOI: https://doi.org/10.1016/ S0032-9592(03)00267-X DOI: https://doi.org/10.1016/S0032-9592(03)00267-X

Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Reviews in Environmental Science and Bio/Technology,9, 117-140. DOI: https://doi.org/10.1007/s11157-009-9184-9

Iqbal, K., Nadeemm, A., & Zafar, U. (2021). Biostoning of textile effluent with laccase enzyme. Bangladesh Journal of Scientific and Industrial Research, 56(2), 115-24. DOI: https://doi.org/10.3329/ bjsir.v56i2.54318 DOI: https://doi.org/10.3329/bjsir.v56i2.54318

Ivanka, S., Albert, K., & Veselin, S. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 1(3), 2010. DOI: 10.4236/abb.2010.13029. DOI: https://doi.org/10.4236/abb.2010.13029

Jebapriya, G.R.,& Gnanadoss, J.J. (2013). Bioremediation of textile dye using white rot fungi: A review. International Journal of Current Research and Review, 5(3), 1.

Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., & Sarfraz, S. (2021). Efficient removal of dyes in textile effluents using aluminum-based coagulant. Efficient Removal of Dyes in Textile Effluents Using Aluminum-Based Coagulant. Chemistry International, 7(3), 197-207. DOI: https://doi.org/10.5281/ zenodo.4899952

Jo, W.S., Kang, M.J., Choi, S.Y., Yoo, Y.B., Seok, S.J., & Jung, H.Y. (2010). Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology,38(3), 195-202.DOI: https://doi.org/ 10.4489/MYCO.2010.38.3.195 DOI: https://doi.org/10.4489/MYCO.2010.38.3.195

Kandasamy, S., Ameen, F., M. Amirul, I., Sudhakar, C., & Selvankumar, T. (2022). Laccase production from Bacillus aestuarii KSK using Borassus flabellifer empty fruit bunch waste as substrate and assess their malachite green dye degradation. Journal of Applied Microbiology, 1-8. DOI: https://doi.org/ 10.1111/jam.15670

Kurniati, A., Puspaningsih, N.N.T., Putri, K.D.A., Damayanti, M., Purwani, N.N., Rahmah, S. A., & Sanjaya, R. E. (2022). Heterologous fusion gene expression and characterization of a novel carbohydrate binding module (Cbm36) to laccase (Lcc2). Biocatalysis and Agricultural Biotechnology, 102377. DOI: https://doi.org/10.1016/j.bcab.2022.102377 DOI: https://doi.org/10.1016/j.bcab.2022.102377

Latif, A., Maqbool, A., Sun, K., & Si, Y. (2022). Immobilization of TrametesVersicolorlaccase on Cu-alginate beads for biocatalytic degradation of bisphenol A in water: Optimized immobilization, degradation and toxicity assessment. Journal of Environmental Chemical Engineering, 10(1), 107089. DOI: https://doi.org/ 10.1016/j.jece.2021.107089 DOI: https://doi.org/10.1016/j.jece.2021.107089

Levin, L., Diorio, L., Grassi, E., & Forchiassin, F. (2012). Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization. Revista Argentina de microbiologia, 44, 105-112.

Macedo, D.S., Vepsäläinen, M., Acharya, D., Wood, C.D., et al. (2021). An unusually stable solid state Ag| AgCl reference electrode for long term continuous measurements based on a crosslinked poly (vinyl acetate)/KCl composite. Electrochimica Acta, 368, 137636.DOI: https://doi.org/10.1016/j.electacta.2020.137636 DOI: https://doi.org/10.1016/j.electacta.2020.137636

Madhavi, V.,& Lele, S. (2009). Laccase: properties and applications. BioResources, 4, 1694-1717.

Manavalan, T., Manavalan, A., Thangavelu, K.P., & Heese, K. (2013). Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochemical Engineering Journal, 70, 106-114.DOI: https://doi.org/10.1016/ j.bej.2012.10.007 DOI: https://doi.org/10.1016/j.bej.2012.10.007

Murugesan, K., Dhamija, A., Nam, I.H., Kim, Y.M.,& Chang, Y.S. (2007). Decolourization of reactive black 5 by laccase: optimization by response surface methodology. Dyes and Pigments, 75(1):176-84. DOI: https://doi.org/10.1016/ j.dyepig.2006.04.020 DOI: https://doi.org/10.1016/j.dyepig.2006.04.020

Muthukumar, K., Sundaram, P.S., Anantharaman, N., & Basha, C.A. (2004). Treatment of textile dye wastewater by using an electrochemical bipolar disc stack reactor. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79, 1135-1141. DOI: https://doi.org/10.1002/jctb.1104 DOI: https://doi.org/10.1002/jctb.1104

Okwara, P., Afolabi, I.S., & Ahuekwe, E.F. (2021). Application of laccase in aflatoxin B1 degradation: a review. In IOP Conference Series: Materials Science and Engineering, 1107(1), 012178. DOI:https://doi.org/10.1088/1757-899X/1107/1/012178 DOI: https://doi.org/10.1088/1757-899X/1107/1/012178

Patel, H., & Gupte, A. (2016). Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresources and Bioprocessing, 3, 1-10. DOI: https://doi.org/10.1186/s40643-016-0088-6

Ramkumar, L., Ramanathan, T.,& Nedumaran, T. (2011). In Vitro effect of Organic and inorganic additives from The production of radial mycelial growth and lignocellulolytic enzyme in Lentinus Edodes (berk.) SING. Emirates Journal of Food and Agriculture, 23(1), 71-79. DOI: https://doi.org/10.9755/ejfa.v23i1.5314

Ramkumar, L., Thirunavukkarasu, P.,& Ramanathan, T. (2010). Development of improved technology for commercial production and preservation of shiitak mushroom (Lentinus edodes). American-Eurasian Journal of Agricultural & Environmental Sciences,7, 433-438.

Ranimol, G., Paul, C., & Sunkar, S. (2021). Optimization and efficacy studies of Laccase immobilized on Zein-Polyvinyl pyrrolidonenano fibrous membrane in decolorization of Acid Red 1. Water Science and Technology, 84 (10-11): 2703–2717. DOI: https://doi.org/10.2166/wst.2021.200 DOI: https://doi.org/10.2166/wst.2021.200

Romelle, F.D., Rani, A.,& Manohar, R.S. (2016). Chemical composition of some selected fruit peels. European Journal of Food Science and Technology,4, 12-21.

Rosales, E., Couto, S.R.,& Sanromán, A. (2002). New uses of food waste: application to laccase production by Trametes hirsuta. Biotechnology Letters, 24, 701-704. DOI: https://doi.org/10.1023/A:1015234100459

Russo, C., Maugeri, A., Lombardo, G.E., Musumeci, L., Barreca, D., Rapisarda, A., & Navarra, M. (2021). The second life of Citrus fruit waste: A valuable source of bioactive compounds. Molecules, 26(19), 5991. DOI: https://doi.org/10.3390/molecules26195991 DOI: https://doi.org/10.3390/molecules26195991

Sathishkumar, P., Murugesan, K.,& Palvannan, T. (2010). Production of laccase from Pleurotus florida using agro‐wastes and efficient decolorization of Reactive blue 198. Journal of basic microbiology, 50, 360-367.DOI: https://doi.org/10.1002/jobm.200900407 DOI: https://doi.org/10.1002/jobm.200900407

Shaban, M., Abukhadra, M.R., Ibrahim, S.S., & Shahien, M.G. (2017). Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization. Applied Water Science, 7, 4743-4756. DOI: https://doi.org/10.1007/s13201-017-0637-y

Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme research, 2011, 217861. DOI:https://doi.org/10.4061/2011/217861 DOI: https://doi.org/10.4061/2011/217861

Shokri, Z., Seidi, F., Karami, S., Li, C., Saeb, M.R., & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 262, 117963. DOI: https://doi.org/10.1016/j.carbpol.2021.117963 DOI: https://doi.org/10.1016/j.carbpol.2021.117963

Singh, A., Pal, D.B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T., & Gupta, V.K. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology, 343, 126154. DOI: https://doi.org/10.1016/j.biortech.2021.126154 DOI: https://doi.org/10.1016/j.biortech.2021.126154

Songserm, P., Sihanonth, P., Sangvanich, P., & Karnchanatat, A. (2012). Decolorization of textile dyes by Polyporus seudobetulinus and extracellular laccase. African Journal of Microbiology Research, 6, 779-792. DOI: https://doi.org/10.5897/AJMR11.988 DOI: https://doi.org/10.5897/AJMR11.988

Sousa, A. C., Martins, L. O., & Robalo, M. P. (2021). Laccases: Versatile biocatalysts for the synthesis of heterocyclic cores. Molecules, 26(12), 3719. DOI: https://doi.org/10.3390/ molecules26123719 DOI: https://doi.org/10.3390/molecules26123719

Sun, K., Hong, D., Liu, J., Latif, A., et al. (2021).Trametes versicolor laccase-assisted oxidative coupling of estrogens: Conversion kinetics, linking mechanisms, and practical applications in water purification. Science of the Total Environment,782, 146917. DOI: https://doi.org/10.1016/ j.scitotenv.2021.146917 DOI: https://doi.org/10.1016/j.scitotenv.2021.146917

Szostek, M., Kosowski, P., Szpunar-Krok, E., Jańczak-Pieniążek, M., Matłok, N., Skrobacz, K., & Balawejder, M. (2022). The Usefulness of Ozone-Stabilized Municipal Sewage Sludge for Fertilization of Maize (Zea mays L.). Agriculture, 12(3), 387. DOI:https://doi.org/10.3390/agriculture12030387 DOI: https://doi.org/10.3390/agriculture12030387

Upadhyay, P., Shrivastava, R.,& Agrawal, P.K., (2016). Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 6(1), 1-12.DOI: https://doi.org/10.1007/s13205-015-0316-3 DOI: https://doi.org/10.1007/s13205-015-0316-3

Villalba-Rodríguez, A. M., Parra-Arroyo, L., González-González, R. B., Parra-Saldívar, R., Bilal, M., & Iqbal, H. M. (2022). Laccase-assisted biosensing constructs–Robust modalities to detect and remove environmental contaminants. Case Studies in Chemical and Environmental Engineering, 100180. DOI: https://doi.org/10.1016/j.cscee.2022.100180 DOI: https://doi.org/10.1016/j.cscee.2022.100180

Wikee, S., Hatton, J., Turbé-Doan, A., Mathieu, Y., et al. (2019). Characterization and dye decolorization potential of two laccases from the marine-derived fungus Pestalotiopsis sp. International journal of molecular sciences, 20(8):1864. DOI: https://doi.org/10.3390/ijms20081864 DOI: https://doi.org/10.3390/ijms20081864

Xin, F., & Geng, A. (2011). Utilization of horticultural waste for laccase production by Trametes versicolor under solid-state fermentation. Applied biochemistry and biotechnology,163, 235-246. DOI: https://doi.org/10.1007/s12010-010-9033-x

Yusuf, M. (2017). Agro-industrial waste materials and their recycled value-added applications. Handbook of Ecomaterials, 1-11. DOI: https://doi.org/10.1007/978-3-319-48281-1_48-1 DOI: https://doi.org/10.1007/978-3-319-48281-1_48-1

Zhang, F., Lian, M.,Alhadhrami, A., Huang, M., Li, B., Mersal, G. A., & Xu, M. (2022). Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenolA degradation from polluted water. Advanced Composites and Hybrid Materials, 1-13. DOI: https://doi.org/10.1007/s42114-022-00476-5 DOI: https://doi.org/10.1007/s42114-022-00476-5

Downloads

Published

2022-08-30

How to Cite

Ramaswamy, U., Lakshmanan, R., Ravichandran, M., Periasamy, P., & Sengodan, S. (2022). Ameliorating Direct Blue Dye Degradation Using Trametes versicolor Derived Laccase Enzyme Optimized through Box–Behnken Design (BBD) via Submerged Fermentation. Journal of Experimental Biology and Agricultural Sciences, 10(4), 818–830. https://doi.org/10.18006/2022.10(4).818.830

Issue

Section

RESEARCH ARTICLES

Categories