Microbial biodegradation of nitrophenols and their derivatives: A Review
DOI:
https://doi.org/10.18006/2022.10(4).743.766Keywords:
Biodegradation, Bioremediation, Nitrophenol, Recalcitrant, XenobioticAbstract
Today, nitrophenols (NPs) represent chemicals highly in demand not only due to their function in synthetic chemistry but also due to their huge applications in several industries. Such diverse requirements and applications has resulted in a widespread abundance of these chemicals. Improper application and waste disposal practice results in the continuous discharge of these compounds into the environment and causes pollution threat to soil, groundwater, river water, etc. These xenobiotic chemicals are hazardous, toxic, carcinogenic, and mutagenic which results in serious health problems. The Nitro group present in the phenol makes them recalcitrant which causes the persistence of these chemicals in the environment. Although several chemicals, electrochemical, physical, and physicochemical methods have been proposed, bioremediation approaches mainly involving bacteria are considered best. To date, very few successful attempts (related to microbe-assisted bioremediation) have been carried out with environmental habitats for the removal of NPs (both in-situ and ex-situ attempts). So, as far as the effectiveness of the bioremediation process for NP decontamination is concerned, we are far away. More explorative studies using efficient aerobic-anaerobic NP degrading bacterial consortium (or combination of microbes- plant systems) and advanced techniques including omics approaches and nanotechnologies may help towards developing better practicable bioremediation approaches, in the future. This review article focuses on the list of nitrophenol degrading microorganisms, biodegradation pathways of NPs, bioremediation by immobilized cell technique, and the advantages and disadvantages of bioremediation. This article will increase our knowledge of the biodegradation of NPs.
References
Alber, T., Cassidy, M., Zablotowicz, R., Trevors, J, & Lee, H. (2000). Degradation of p-nitrophenol and pentachlorophenol mixtures by Sphingomonas sp. UG30 in soil perfusion bioreactors. Journal of Industrial Microbiology and Biotechnology, 25, 93-99. DOI: https://doi.org/10.1038/sj.jim.7000040
Arora, P.K. (2012a). Decolorization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700. PLoS One, 7, 52012. DOI: https://doi.org/10.1371/journal.pone.0052012
Arora, P.K. (2012b). Metabolism of para-nitrophenol in Arthrobacter sp. SPG. Journal of Environmental Science Management, 3, 52-57.
Arora, P.K., & Bae, H. (2014). Biotransformation and chemotaxis of 4-chloro-2-nitrophenol by Pseudomonas sp. JHN. Microbial cell factories, 13, 1-6. DOI: https://doi.org/10.1186/s12934-014-0110-7
Arora, P.K., & Jain, R.K. (2011). Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon. Current microbiology, 63, 568-573. DOI: https://doi.org/10.1007/s00284-011-0022-2
Arora, P.K., & Jain, R.K. (2012). Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1. Biodegradation, 23, 325-331. DOI: https://doi.org/10.1007/s10532-011-9512-y
Arora, P.K., Sharma, A., Mehta, R., Shenoy, B.D., Srivastava, A., & Singh, V.P. (2012). Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA. Microbial Cell Factories, 11, 1-10. DOI: https://doi.org/10.1186/1475-2859-11-150
Arora, P.K., Srivastava, A., & Singh, V.P. (2014a). Bacterial degradation of nitrophenols and their derivatives. Journal of Hazardous Materials, 266, 42-59. DOI: https://doi.org/10.1016/j.jhazmat.2013.12.011
Arora, P.K., Srivastava, A., & Singh, V.P. (2014b) Degradation of 4-chloro-3-nitrophenol via a novel intermediate, 4-chlororesorcinol by Pseudomonas sp. JHN. Scientific reports, 4, 1-6. DOI: https://doi.org/10.1038/srep04475
Arora, P.K., Srivastava, A., & Singh, V.P. (2016). Diversity of 4-chloro-2-nitrophenol-degrading bacteria in a wastewater sample. Journal of Chemistry, 2016. DOI: https://doi.org/10.1155/2016/7589068
Barles, R.W., Daughton, C.G., & Hsieh, D.P. (1979). Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions. Archives of Environmental Contamination and Toxicology, 8, 647-660. DOI: https://doi.org/10.1007/BF01054867
Behrend, C., & Heesche-Wagner, K. (1999). Formation of hydride-Meisenheimer complexes of picric acid (2, 4, 6-trinitrophenol) and 2, 4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Applied and Environmental Microbiology, 65, 1372-1377. DOI: https://doi.org/10.1128/AEM.65.4.1372-1377.1999
Beunink, J., & Rehm, H.J. (1990). Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Applied Microbiology and Biotechnology, 34, 108-115. DOI: https://doi.org/10.1007/BF00170933
Bhushan, B., Chauhan, A., Samanta, S.K., & Jain, R.K. (2000). Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochemical and Biophysical Research Communications, 274, 626-630. DOI: https://doi.org/10.1006/bbrc.2000.3193
Blasco, R., & Castillo, F. (1992). Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1. Applied and environmental microbiology, 58, 690-695. DOI: https://doi.org/10.1128/aem.58.2.690-695.1992
Blasco, R., Moore, E., Wray, V., Pieper, D., Timmis, K., & Castillo, F. (1999). 3-Nitroadipate, a metabolic intermediate for mineralization of 2, 4-dinitrophenol by a new strain of a Rhodococcus species. Journal of Bacteriology, 181, 149-152. DOI: https://doi.org/10.1128/JB.181.1.149-152.1999
Brown, M., & Chessin, R. (1995). Toxicological profile for dinitrocresols. In: Agency for Toxic CRC Press, Substances and Disease Registry’s: Toxicological profiles, 1995, 1–143.
Bruhn, C., Bayly, R., & Knackmuss, H. (1988). The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Archives of microbiology, 150, 171-177. DOI: https://doi.org/10.1007/BF00425158
Bruhn, C., Lenke, H., & Knackmuss, H.J. (1987). Nitro substituted aromatic compounds as nitrogen source for bacteria. Applied and Environmental Microbiology, 53, 208-210. DOI: https://doi.org/10.1128/aem.53.1.208-210.1987
Chauhan, A., Chakraborti, A.K., & Jain, R.K. (2000). Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochemical and biophysical research communications, 270, 733-740. DOI: https://doi.org/10.1006/bbrc.2000.2500
Chauhan, A., Pandey, G., Sharma, N.K., Paul, D., Pandey, J., & Jain, R.K. (2010). p-Nitrophenol degradation via 4-nitrocatechol in Burkholderia sp. SJ98 and cloning of some of the lower pathway genes. Environmental Science & Technology, 44, 3435-3441. DOI: https://doi.org/10.1021/es9024172
Chen, S., Geng, P., Xiao, Y., & Hu, M. (2012). Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology and Biotechnology, 94, 505-515. DOI: https://doi.org/10.1007/s00253-011-3640-5
Cho, Y.G., Rhee, S.K., & Lee, S.T. (2000). Influence of phenol on biodegradation of p-nitrophenol by freely suspended and immobilized Nocardioides sp. NSP41. Biodegradation, 11, 21-28.
Daubaras, D.L., Saido, K., & Chakrabarty, A.M. (1996). Purification of hydroxyquinol 1, 2-dioxygenase and maleylacetate reductase: the lower pathway of 2, 4, 5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Applied and Environmental Microbiology, 62, 4276-4279. DOI: https://doi.org/10.1128/aem.62.11.4276-4279.1996
Donlon, B., Razo‐Flores, E., Lettinga, G., & Field, J. (1996). Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering, 51, 439-449. DOI: https://doi.org/10.1002/(SICI)1097-0290(19960820)51:4<439::AID-BIT7>3.0.CO;2-J
Ebert, S., Fischer, P., & Knackmuss, H. (2001). Converging catabolism of 2, 4, 6-trinitrophenol (picric acid) and 2, 4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation, 12, 367-376.
Ebert, S., Rieger, P.G., & Knackmuss, H. (1999). Function of coenzyme F420 in aerobic catabolism of 2, 4, 6-trinitrophenol and 2, 4-dinitrophenol by Nocardioides simplex FJ2-1A. Journal of Bacteriology, 181, 2669-2674. DOI: https://doi.org/10.1128/JB.181.9.2669-2674.1999
Ecker, S., Widmann, T., Lenke, H., Dickel, O., Fischer, P., Bruhn, C., & Knackmuss, H. (1992). Catabolism of 2, 6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Archives of Microbiology, 158, 149-154. DOI: https://doi.org/10.1007/BF00245219
EPA. (1980). Ambient water quality criteria for nitrophenols. U.S Environmental Protection Agency, 440/5-80-032.
Errampalli, D., Tresse, O., Lee, H., & Trevors, J. (1999). Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS microbiology ecology, 30, 229-236. DOI: https://doi.org/10.1111/j.1574-6941.1999.tb00651.x
Fernández‐López, M. G., Popoca‐Ursino, C., Sánchez‐Salinas, E., Tinoco‐Valencia, R., Folch‐Mallol, J., Dantán‐González, E., & Laura Ortiz‐Hernández, M. (2017). Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils. Microbiology Open, 6, 00507. DOI: https://doi.org/10.1002/mbo3.507
Gemini, V.L., Gallego, A., De Oliveira, V.M., Gomez, C., Manfio, G.P., & Korol, S.E. (2005). Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. International Biodeterioration & Biodegradation, 55, 103-108. DOI: https://doi.org/10.1016/j.ibiod.2004.08.003
Ghosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A.K., & Jain, R.K. (2010). Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2, 4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environmental Science & Technology, 44, 1069-1077. DOI: https://doi.org/10.1021/es9034123
Guo, Y., Li, D.F., Zheng, J., Xu, Y., & Zhou, N.Y. (2021). Single-Component and Two-Component para-Nitrophenol Monooxygenases: Structural Basis for Their Catalytic Difference. Applied and Environmental Microbiology, 87, 01171-21. DOI: https://doi.org/10.1128/AEM.01171-21
Haigler, B., & Spain, J. (1993). Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Applied and Environmental Microbiology, 59, 2239-2243. DOI: https://doi.org/10.1128/aem.59.7.2239-2243.1993
Hamdi, Y.A., & Tewfik, M.S. (1970). Degradation of 3, 5-dinitro-o-cresol by RhizobiumandAzotobacter spp. Soil Biology and Biochemistry, 2, 163-166. DOI: https://doi.org/10.1016/0038-0717(70)90003-9
Hanne, L., Kirk, L., Appel, S., Narayan, A., & Bains, K. (1993). Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Applied and Environmental Microbiology, 59, 3505-3508. DOI: https://doi.org/10.1128/aem.59.10.3505-3508.1993
Hatta, T., Nakano, O., Imai, N., Takizawa, N., & Kiyohara, H. (1999). Cloning and sequence analysis of hydroxyquinol 1, 2-dioxygenase gene in 2, 4, 6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. Journal of Bioscience and Bioengineering, 87, 267-272. DOI: https://doi.org/10.1016/S1389-1723(99)80030-9
Hayatsu, M., Hirano, M., & Tokuda, S. (2000). Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Applied and Environmental Microbiology, 66, 1737-1740. DOI: https://doi.org/10.1128/AEM.66.4.1737-1740.2000
Heiss, G., Trachtmann, N., Abe, Y., Takeo, M., & Knackmuss, H.J. (2003). Homologous npdGI genes in 2, 4-dinitrophenol-and 4-nitrophenol-degrading Rhodococcus spp. Applied and Environmental Microbiology, 69, 2748-2754. DOI: https://doi.org/10.1128/AEM.69.5.2748-2754.2003
Heitkamp, M., Camel, V., Reuter, T.J., & Adams, W. (1990). Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria. Applied and Environmental Microbiology, 56, 2967-2973. DOI: https://doi.org/10.1128/aem.56.10.2967-2973.1990
Herrera-Melián, J., Martín-Rodríguez, A.J., Ortega-Méndez, A., Araña, J., Doña-Rodríguez, J., & Pérez-Peña, J. (2012). Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. Journal of Environmental Management, 105, 53-60. DOI: https://doi.org/10.1016/j.jenvman.2012.03.044
Hess, T.F., Schmidt, S., Silverstein, J., & Howe, B. (1990). Supplemental substrate enhancement of 2, 4-dinitrophenol mineralization by a bacterial consortium. Applied and Environmental Microbiology, 56, 1551-1558. DOI: https://doi.org/10.1128/aem.56.6.1551-1558.1990
Hong, Q., Zhang, Z., Hong, Y., & Li, S. (2007). A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. International Biodeterioration & Biodegradation, 59, 55-61. DOI: https://doi.org/10.1016/j.ibiod.2006.07.013
Ignatov, O., Guliy, O., Singirtsev, I., Shcherbakov, A., Makarov, O., & Ignatov, V. (2002). Effects of p-nitrophenol and organo phosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains C-11 and BA-11 of Pseudomonas putida. Applied Biochemistry and Microbiology, 38, 240-246. DOI: https://doi.org/10.1023/A:1015419307819
Iwaki, H., Muraki, T., Ishihara, S., Hasegawa, Y., Rankin, K., Sulea, T., Boyd, J., & Lau, P. (2007). Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. Journal of Bacteriology, 189, 3502-3514. DOI: https://doi.org/10.1128/JB.01098-06
Jain, R.K., Dreisbach, J.H., & Spain, J.C. (1994). Biodegradation of p-nitrophenol via 1, 2, 4-benzenetriol by an Arthrobacter sp. Applied and Environmental Microbiology, 60, 3030-3032. DOI: https://doi.org/10.1128/aem.60.8.3030-3032.1994
Ju, K., & Parales, R. (2010). Nitroaromatic compounds, from synthesis to biodegradation. Microbiology and Molecular Biology Reviews, 74, 250-272. DOI: https://doi.org/10.1128/MMBR.00006-10
Kadiyala, V., & Spain, J.C. (1998). A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology, 64, 2479-2484. DOI: https://doi.org/10.1128/AEM.64.7.2479-2484.1998
Kanaly, R., Kim, I., & Hur, H. (2005). Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. Journal of Agricultural and Food Chemistry, 53, 6426-6431. DOI: https://doi.org/10.1021/jf050679w
Karim, K., & Gupta, S. (2001). Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors. Bioresource Technology, 80, 179-186. DOI: https://doi.org/10.1016/S0960-8524(01)00092-X
Kitagawa, W., Kimura, N., & Kamagata, Y. (2004). A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. Journal of bacteriology, 186, 4894-4902. DOI: https://doi.org/10.1128/JB.186.15.4894-4902.2004
Kitova, A., Kuvichkina, T., Arinbasarova, A., & Reshetilov, A. (2004). Degradation of 2, 4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Applied Biochemistry and Microbiology, 40, 258-261. DOI: https://doi.org/10.1023/B:ABIM.0000025948.77233.dc
Kristanti, R.A., Kanbe, M., Toyama, T., Tanaka, Y., Tang, Y., Wu, X., & Mori, K. (2012). Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza. Journal of Environmental Sciences, 24, 800-807. DOI: https://doi.org/10.1016/S1001-0742(11)60839-5
Kuang, S., Le, Q., Hu, J., Wang, Y., et al. (2020). Effects of p-nitrophenol on enzyme activity, histology, and gene expression in Larimichthys crocea. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228, 108638. DOI: https://doi.org/10.1016/j.cbpc.2019.108638
Kulkarni, M., & Chaudhari, A. (2006). Biodegradation of p-nitrophenol by P. putida. Bioresource Technology, 97, 982-988. DOI: https://doi.org/10.1016/j.biortech.2005.04.036
Kulkarni, M., & Chaudhari, A. (2007). Microbial remediation of nitro-aromatic compounds: an overview. Journal of Environmental Management, 85, 496-512. DOI: https://doi.org/10.1016/j.jenvman.2007.06.009
Kumar, J., & D'Souza, S.F. (2010). An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on microplate as a reusable biocomponent. Biosensors and Bioelectronics, 26, 1292-1296. DOI: https://doi.org/10.1016/j.bios.2010.07.016
Labana, S., Pandey, G., Paul, D., Sharma, N.K., Basu, A., & Jain, R.K. (2005). Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environmental Science & Technology, 39, 3330-3337. DOI: https://doi.org/10.1021/es0489801
Lang, M., Spiteller, P., Hellwig, V., & Steglich, W. (2001). Stephanosporin, a “Traceless” Precursor of 2‐Chloro‐4‐nitrophenol in the Gasteromycete Stephanospora caroticolor. Angewandte Chemie International Edition, 40, 1704-1705. DOI: https://doi.org/10.1002/1521-3773(20010504)40:9<1704::AID-ANIE17040>3.0.CO;2-L
Lei, Y., Mulchandani, A., & Chen, W. (2005). Improved degradation of organophosphorus nerve agents and p‐nitrophenol by Pseudomonas putida JS444 with surface‐expressed organophosphorus hydrolase. Biotechnology Progress, 21, 678-681. DOI: https://doi.org/10.1021/bp049590l
Lenke, H., & Knackmuss, H. (1992). Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Applied and Environmental Microbiology, 58, 2933-2937. DOI: https://doi.org/10.1128/aem.58.9.2933-2937.1992
Lenke, H., & Knackmuss, H. (1996). Initial hydrogenation and extensive reduction of substituted 2, 4-dinitrophenols. Applied and Environmental Microbiology, 62, 784-790. DOI: https://doi.org/10.1128/aem.62.3.784-790.1996
Lenke, H., Pieper, D., Bruhn, C., & Knackmuss, H. (1992). Degradation of 2, 4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Applied and Environmental Microbiology, 58, 2928-2932. DOI: https://doi.org/10.1128/aem.58.9.2928-2932.1992
Leung, K.T., Tresse, O., Errampalli, D., Lee, H., & Trevors, J.T. (1997). Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp. FEMS Microbiology Letters, 155, 107-114. DOI: https://doi.org/10.1111/j.1574-6968.1997.tb12693.x
Li, Y., Zhou, B., Li, W., Peng, X., Zhang, J., & Yan, Y. (2008). Mineralization of p-nitrophenol by a new isolate Arthrobacter sp. Y1. Journal of Environmental Science and Health Part B, 43, 692-697. DOI: https://doi.org/10.1080/03601230802388793
Lima, S., Castro, P., & Morais, R. (2003). Biodegradation of p-nitrophenol by microalgae. Journal of Applied Phycology, 15, 137-142. DOI: https://doi.org/10.1023/A:1023877420364
Liu, H., Zhang, J.J., Wang, S.J., Zhang, X.E., & Zhou, N.Y. (2005). Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochemical and Biophysical Research Communications, 334, 1107-1114. DOI: https://doi.org/10.1016/j.bbrc.2005.07.006
Liu, Z., Yang, C., & Qiao, C. (2007). Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiology Letters, 277, 150-156. DOI: https://doi.org/10.1111/j.1574-6968.2007.00940.x
Löser, C., Oubelli, M.A., & Hertel, T. (1998). Growth kinetics of the 4‐nitrophenol degrading strain Pseudomonas putida PNP1. Acta Biotechnologica, 18, 29-41. DOI: https://doi.org/10.1002/abio.370180105
Meulenberg, R., Pepi, M., & de Bont, J.A. (1996). Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1, 2, 4-benzenetriol. Biodegradation, 7, 303-311. DOI: https://doi.org/10.1007/BF00115744
Min, J., Lu, Y., Hu, X., & Zhou, N.Y. (2016). Biochemical characterization of 3-methyl-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Frontiers in Microbiology, 7, 791. DOI: https://doi.org/10.3389/fmicb.2016.00791
Min, J., Wang, J., Chen, W., & Hu, X. (2018). Biodegradation of 2-chloro-4-nitrophenol via a hydroxyquinol pathway by a Gram-negative bacterium, Cupriavidus sp. strain CNP-8. AMB Express, 8, 1-11. DOI: https://doi.org/10.1186/s13568-018-0574-7
Min, J., Zhang, J.J., & Zhou, N.Y. (2014). The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Applied and Environmental Microbiology, 80, 6212-6222. DOI: https://doi.org/10.1128/AEM.02093-14
Mohan, S., Kisa, T., Ohkuma, T., Kanaly, R.A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Biotechnology, 5, 347-374. DOI: https://doi.org/10.1007/s11157-006-0004-1
Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363-375. DOI: https://doi.org/10.1016/j.micres.2009.08.001
Nielsen, M.B., Kjeldsen, K.U., & Ingvorsen, K. (2011). Description of Citricoccus nitrophenolicus sp. nov., a para-nitrophenol degrading actinobacterium isolated from a wastewater treatment plant and emended description of the genus Citricoccus Altenburger et al. 2002. Antonie van Leeuwenhoek, 99, 489-499. DOI: https://doi.org/10.1007/s10482-010-9513-6
Ningthoujam, D. (2005). Isolation and Identification of a Brevibacterium linens strain degrading p-nitrophenol. African Journal of Biotechnology, 4, 256-257.
Pailan, S., & Saha, P. (2015). Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation. Peer J, 3, 1378. DOI: https://doi.org/10.7717/peerj.1378
Pakala, S.B., Gorla, P., Pinjari, A.B., Krovidi, R.K., et al. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Applied Microbiology and Biotechnology, 73, 1452-1462. DOI: https://doi.org/10.1007/s00253-006-0595-z
Pandey, G., Paul, D., & Jain, R.K. (2003). Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiology Letters, 229, 231-236. DOI: https://doi.org/10.1016/S0378-1097(03)00844-9
Pandey, J., Heipieper, H., Chauhan, A., Arora, P.K., et al. (2011). Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Applied Microbiology and Biotechnology, 92, 597-607. DOI: https://doi.org/10.1007/s00253-011-3254-y
Paul, D., Rastogi, N., Krauss, U., Schlomann, M., et al. (2008). Diversity of ‘benzenetriol dioxygenase’ involved in p-nitrophenol degradation in soil bacteria. Indian Journal of Microbiology, 48, 279-286. DOI: https://doi.org/10.1007/s12088-008-0038-x
Prakash, D., Chauhan, A., & Jain, R.K. (1996). Plasmid-Encoded Degradation of p-Nitrophenol by Pseudomonas cepacia. Biochemical and Biophysical Research Communications, 224, 375-381. DOI: https://doi.org/10.1006/bbrc.1996.1036
Przybyla, J., Carlson-Lynch, H., Klotzbach, J.M., & Crisman, J.S. (2021). Toxicological profile for dinitrophenols. U.S. Environmental Protection Agency (EPA). PP:1-211.
Qiu, X., Wu, P., Zhang, H., Li, M., & Yan, Z. (2009). Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Bioresource Technology, 100, 5243-5248. DOI: https://doi.org/10.1016/j.biortech.2009.05.056
Qiu, X., Zhong, Q., Li, M., Bai, W., & Li, B. (2007). Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. International Biodeterioration and Biodegradation, 59, 297-301. DOI: https://doi.org/10.1016/j.ibiod.2006.09.005
Rajan, J., Valli, K., Perkins, R.E., Sariaslani, F.S., et al. (1996). Mineralization of 2, 4, 6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. Journal of Industrial Microbiology and Biotechnology, 16, 319-324. DOI: https://doi.org/10.1007/BF01570041
Rehman, A., Raza, Z., Afzal, M., & Khalid, Z. (2007). Kinetics of p-nitrophenol degradation by Pseudomonas pseudomallei wild and mutant strains. Journal of Environmental Science and Health, Part A, 42, 1147-1154. DOI: https://doi.org/10.1080/10934520701418656
Rieger, P.G., Sinnwell, V., Preub, A., Francke, W., & Knackmuss, H. (1999). Hydride-Meisenheimer complex formation and protonation as key reactions of 2, 4, 6-trinitrophenol biodegradation by Rhodococcus erythropolis. Journal of Bacteriology, 181, 1189-1195. DOI: https://doi.org/10.1128/JB.181.4.1189-1195.1999
Samson, R., Bodade, R., Zinjarde, S., & Kutty, R. (2019). A novel Sphingobacterium sp. RB, a rhizosphere isolate degrading para-nitrophenol with substrate specificity towards nitrotoluenes and nitroanilines. FEMS Microbiology Letters, 366, 168. DOI: https://doi.org/10.1093/femsle/fnz168
Samuel, M., Sivaramakrishna, A., & Mehta, A. (2014). Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain. Journal of Environmental Health Science and Engineering, 12, 1-8. DOI: https://doi.org/10.1186/2052-336X-12-53
Schäfer, A., Harms, H., & Zehnder, A.J. (1996). Biodegradation of 4-nitroanisole by two Rhodococcus spp. Biodegradation, 7, 249-255. DOI: https://doi.org/10.1007/BF00058184
Schenzle, A., Lenke, H., Fischer, P., Williams, P.A., & Knackmuss, H. (1997). Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Applied and Environmental Microbiology, 63, 1421-1427. DOI: https://doi.org/10.1128/aem.63.4.1421-1427.1997
Schenzle, A., Lenke, H., Spain, J.C., & Knackmuss, H.J. (1999). Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Applied and Environmental Microbiology, 65, 2317-2323. DOI: https://doi.org/10.1128/AEM.65.6.2317-2323.1999
Schleifer, K. (2004). Microbial diversity: facts, problems and prospects. Systematic and applied microbiology, 27, 3. DOI: https://doi.org/10.1078/0723-2020-00245
Sethunathan, N., & Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinon and parathion. Canadian Journal of Microbiology, 19, 873-875. DOI: https://doi.org/10.1139/m73-138
She, Z., Gao, M., Jin, C., Chen, Y., & Yu, J. (2005). Toxicity and biodegradation of 2, 4-dinitrophenol and 3-nitrophenol in anaerobic systems. Process Biochemistry, 40, 3017-3024. DOI: https://doi.org/10.1016/j.procbio.2005.02.007
Shen, J., Zhang, J., Zuo, Y., Wang, L., et al. (2009). Biodegradation of 2, 4, 6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 163, 1199-1206. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.086
Shen, W., Liu, W., Zhang, J., Tao, J., Deng, H., Cao, H., & Cui, Z. (2010). Cloning and characterization of a gene cluster involved in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4. Bioresource Technology, 101, 7516-7522. DOI: https://doi.org/10.1016/j.biortech.2010.04.052
Siddaramappa, R., Rajaram, K.P., & Sethunathan, N. (1973). Degradation of parathion by bacteria isolated from flooded soil. Applied microbiology, 26, 846-849. DOI: https://doi.org/10.1128/am.26.6.846-849.1973
Spain, J. (1995). Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49, 523-555. DOI: https://doi.org/10.1146/annurev.mi.49.100195.002515
Spain, J., & Gibson, D. (1991). Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Applied and Environmental Microbiology, 57, 812-819. DOI: https://doi.org/10.1128/aem.57.3.812-819.1991
Sudhakar-Barik, Siddaramappa, R., & Sethunathan, N. (1976). Metabolism of nitrophenols by bacteria isolated from parathion-amended flooded soil. Antonie van Leeuwenhoek, 42, 461-470. DOI: https://doi.org/10.1007/BF00410177
Takeo, M., Yasukawa, T., Abe, Y., Niihara, S., Maeda, Y., & Negoro, S. (2003). Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. Journal of Bioscience and Bioengineering, 95, 139-145. DOI: https://doi.org/10.1016/S1389-1723(03)80119-6
Teramoto, H., Tanaka, H., & Wariishi, H. (2004). Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 66, 312-317. DOI: https://doi.org/10.1007/s00253-004-1637-z
Van Elsas, J., & Heijnen, C. (1990). Methods for the introduction of bacteria into soil: a review. Biology and Fertility of Soils, 10, 127-133. DOI: https://doi.org/10.1007/BF00336248
Vikram, S., Pandey, J., Bhalla, N., Pandey, G., Ghosh, A., Khan, F., Jain, R.K., & Raghava, G.P. (2012). Branching of the p-nitrophenol (PNP) degradation pathway in Burkholderia sp. strain SJ98: evidences from genetic characterization of PNP gene cluster. AMB Express, 2, 1-10. DOI: https://doi.org/10.1186/2191-0855-2-30
Wallnoefer, P.R., Ziegler, W., Engelhardt, G., & Rothmeier, H. (1978). Transformation of dinitrophenol-herbicides by Azotobacter sp. Chemosphere, 7, 967-972. DOI: https://doi.org/10.1016/0045-6535(78)90006-1
Wan N, Gu J, & Yan Y (2007) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. International Biodeterioration and Biodegradation, 59, 90-96. DOI: https://doi.org/10.1016/j.ibiod.2006.07.012
Wang, J., Ren, L., Jia, Y., Ruth, N., Shi, Y., Qiao, C., & Yan, Y. (2016). Degradation characteristics and metabolic pathway of 4-nitrophenol by a halotolerant bacterium Arthrobacter sp. CN2. Toxicological and Environmental Chemistry, 98, 226-240. DOI: https://doi.org/10.1080/02772248.2015.1115507
Wang, X., Xing, D., Mei, X., Liu, B., & Ren, N. (2018). Glucose and applied voltage accelerated p-nitrophenol reduction in biocathode of bioelectrochemical systems. Frontiers in Microbiology, 9, 580. DOI: https://doi.org/10.3389/fmicb.2018.00580
Wyman, J., Serve, M., Hobson, D., Lee, L., & Uddin, D. (1992). Acute toxicity, distribution, and metabolism of 2, 4, 6‐trinitrophenol (picric acid) in Fischer 344 rats. Journal of Toxicology and Environmental Health Part A Current Issues, 37, 313-327. DOI: https://doi.org/10.1080/15287399209531672
Xiao, Y., Zhang, J., Liu, H., & Zhou, N. (2007). Molecular characterization of a novel ortho-nitrophenol catabolic gene cluster in Alcaligenes sp. strain NyZ215. Journal of Bacteriology, 189, 6587-6593. DOI: https://doi.org/10.1128/JB.00654-07
Xu, J., Wang, B., Zhang, W.H., Zhang, F.J., et al. (2021). Biodegradation of p-nitrophenol by engineered strain. AMB Express, 11,1-8. DOI: https://doi.org/10.1186/s13568-021-01284-8
Yin, Y., Xiao, Y., Liu, H., Hao, F., Rayner, S., Tang, H., & Zhou, N. (2010). Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Applied Microbiology and Biotechnology, 87, 2077-2085. DOI: https://doi.org/10.1007/s00253-010-2666-4
Zablotowicz, R., Leung, K., Alber, T., Cassidy, M., et al. (1999). Degradation of 2, 4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Canadian Journal of Microbiology, 45, 840-848. DOI: https://doi.org/10.1139/w99-083
Zeyer, J., & Kearney, P. (1984). Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. Journal of Agricultural and Food Chemistry, 32, 238-242. DOI: https://doi.org/10.1021/jf00122a015
Zhang, J., Liu, H., Xiao, Y., Zhang, X., & Zhou, N. (2009a). Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3. Journal of Bacteriology, 191, 2703-2710. DOI: https://doi.org/10.1128/JB.01566-08
Zhang, J., Sun, Z., Li, Y., Peng, X., Li, W., & Yan, Y. (2009b). Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. Journal of Hazardous Materials, 163, 723-728. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.018
Zhang, J., Zhang, H., Chen, L., Fan, X., & Yang, Y. (2022). Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. International Journal of Environmental Research and Public Health, 19, 8169. DOI: https://doi.org/10.3390/ijerph19138169
Zhang, S., Sun, W., Xu, L., Zheng, X., et al. (2012). Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Pseudomonas sp. 1-7. BMC microbiology, 12, 1-11. DOI: https://doi.org/10.1186/1471-2180-12-27
Zhang, Z., Hong, Q., Xu, J., Zhang, X., & Li, S. (2006). Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation, 17, 275-283. DOI: https://doi.org/10.1007/s10532-005-7130-2
Zhao, J., & Ward, O. (2001). Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions. Applied and Environmental Microbiology, 67, 1388-1391. DOI: https://doi.org/10.1128/AEM.67.3.1388-1391.2001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.