Assessment of trace element accumulation in surface sediment of Sepang Besar river, Malaysia

Authors

DOI:

https://doi.org/10.18006/2022.10(4).870.878

Keywords:

Trace element, Pollution, Enrichment factor, Geo-accumulation, ICP-MS

Abstract

Due to non-scientific industrial activity and urbanization, trace elements contamination has posed a threat to Malaysia's biodiversity-rich coastal wetlands, streams, estuaries, and mangroves. Commercialization has taken a toll on mangroves in backwater canals and along the banks of the Sepang River. As a result, a thorough examination of sediment quality from the Sepang River mangrove habitats is done with a focus on trace element pollution and pollution issues, taking into account the enormous ecological services that are offered to coastal communities and offering guidance for upcoming restoration efforts. The concentration of trace elements (Cr, As, Pb, Ni, Mo, Co, Cd, and Hg) in the sediment samples was measured using an induced plasma mass spectrometric (ICP-MS). Results of the study revealed that Arsenic (As) levels exceeded the Canadian range of low effects, indicating the possibility of deleterious biological consequences on mangrove plants and animals. In all sampling locations, the enrichment factor (EF) analysis revealed extraordinarily high enrichment of As (9.89–23.65) and Mo (4.74–12.03). The geo-accumulation index of As (1.83 – 3.04), Mo (1.40 – 2.74), and Cd (0.652 – 3.03) revealed that mangrove locations in the Sepang River have almost extreme pollution effects. Pearson's correlation, which deduced the anthropogenic influence of As, Cd, and Mo in mangroves, backed up this claim. Results of the study recommended that continue monitoring of pollutants released from anthropogenic sources is highly required and there is a strong need to take more stringent measures to protect the environment.

References

Alfian, Yusuf, S., & Sutisna. (2020). Elemental analysis of SRM 1547 peach leaves, 1573a tomato leaves, and 1570a spinach leaves. Journal of Physics: Conference Series, 1436, 012044. DOI: https://doi.org/10.1088/1742-6596/1436/1/012044

Ali, H., & Khan, E. (2019). Bioaccumulation of Cr, Ni, Cd and Pb in the economically important freshwater fish Schizothorax plagiostomus from three rivers of Malakand Division, Pakistan: risk assessment for human health. Bulletin of Environmental Contamination and Toxicology, 102, 77–83. https://doi.org/10.1007/s00128-018-2500-8. DOI: https://doi.org/10.1007/s00128-018-2500-8

Alloway, B. J. (2013). Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils 22, 11-50.https://doi.org/10.1007/978-94-007-4470-7 DOI: https://doi.org/10.1007/978-94-007-4470-7_2

Bhunia, P. (2017). Environmental Toxicants and Hazardous Contaminants: Recent Advances in technologies for Sustainable Development. Journal of Hazardous, Toxic, and Radioactive Waste, 21, 02017001. DOI: https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000366

Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soilcontaminants tophytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20, 384–397. DOI: https://doi.org/10.1080/15226514.2017.1365340

Chen, Y.X., Lin, Q., He, Y.F., & Tian, G.M. (2004). Behavior of Cu and Zn under combined pollution of 2,4-dichlorophenol in the planted soil. Plant and Soil, 61, 127–134. DOI: https://doi.org/10.1023/B:PLSO.0000035581.92021.f2

Gao, X., Arthur Chen, C.T., Wang, G., Xue, Q., Tang, C., & Chen, S. (2010) Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estuarine, Coastal and Shelf Science, 86(3), 369–378. DOI: https://doi.org/10.1016/j.ecss.2009.10.012

Garbisu, C., Alkorta, I., Kidd, P., Epelde, L., & Mench, M. (2020). Keep and promote biodiversityat polluted sites under phytomanagement. Environmental Science and Pollution Research, 27, 44820–44834. DOI: https://doi.org/10.1007/s11356-020-10854-5

Islam, M. S. (2021). Preliminary assessment of trace elements in surface and deep waters of anurbanriver (Korotoa) in Bangladesh and associated health risk. Environmental Science and Pollution Research, 28(23), 29287-29303, Doi:10.1007/ s11356-021-12541-5. DOI: https://doi.org/10.1007/s11356-021-12541-5

Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., et al. (2015). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20, 1319-1334. DOI: https://doi.org/10.1007/s11027-014-9547-6

Khan, I.S.A.N. (1990). The mineralogy and trace element constituents of suspended streamsediments ofthe Linggi River Basin, Malaysia. Earth, 4, 133–139. DOI: https://doi.org/10.1016/0743-9547(90)90012-3

Kim, K.T., Ra, K., Kim, E.S., Yim, U.H., & Kim, J.K. (2011). Distribution of Heavy Metals in the Surface Sediments of the Han River and its Estuary, Korea, SI 64. Proceedings of the 11th International Coastal Symposium, pp. 903 – 907. Szczecin, Poland, ISSN 0749-0208.

Krishnan, K., Saion, E. B., CK, Y., Chong, M. Y., & Nadia, A. S. (2022). Determination of Trace Elements in Sediments Samples by Using Neutron Activation Analysis. Journal of Experimental Biology and Agricultural Sciences, 10(1), 21–31. https://doi.org/10.18006/2022.10(1).21.31 DOI: https://doi.org/10.18006/2022.10(1).21.31

Kumar, K., Saion, E., Halimah, M., Yap, C., & Hamzah, M.S. (2014). Rare earth element (REE) in surface mangrove sediment by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 301, 667–676. DOI: https://doi.org/10.1007/s10967-014-3221-z

Landajo, A., Arana, G., de Diego, A., Etxebarria, N., Zuloaga, O., & Amouroux, D. (2004). Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES. Chemosphere, 56,1033–1041. DOI: https://doi.org/10.1016/j.chemosphere.2004.06.005

MacDonald, D.D., Ingersoll, C.G., & Berger, T.A. (2000). Development and evaluation of consensus-basedsediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20-31 Doi:http://dx.doi.org/ 10.1007/s002440010075. DOI: https://doi.org/10.1007/s002440010075

Malhi, Y., Baker, T.R., Phillips, O.L., Almeida, S., et al. (2004). The above-ground coarse wood productivity of 104 neotropical forest plots. Global Change Biology, 10, 563–591. DOI: https://doi.org/10.1111/j.1529-8817.2003.00778.x

Marques, M.J., Salvador, A., & Morales-Rubio, A.E.M. (2000). Trace element determinationin sediments: a comparative study between neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS), Microchemical Journal, 65, 177–187. DOI: https://doi.org/10.1016/S0026-265X(00)00051-5

Mishra, A.K., Santos, R., & Hall-Spencer, J.M. (2020). Elevated trace elements in sediments andseagrasses at CO2 seeps. Environmental Research, 153, 104810, https://doi.org/10.1016/ j.marenvres.2019.104810 DOI: https://doi.org/10.1016/j.marenvres.2019.104810

Muhammad, Y.Y., Nisfariza, M.N., Mariney, M.Y., Jamalunlaili, A., & Norzailawati, M.N. (2020). SPOT Imagery Observation on Mangrove Changes Using NDVI Density Analysis: The Case of Sepang Besar River, Malaysia. The Arab World Geographer / Le Géographe du monde arabe, 23(2-3),217-228. https://doi.org/ 10.5555/1480-6800.23.2.217.

Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2(3), 108-118.

Naji, A., & Ismail, A. (2016). Assessment of Metals Contamination in Klang River Surface Sediments by using Different Indexes. Environmental Asia, 4, 30–38, DOI:10.14456/ea.2011.5.

Nath, A., Samanta, S., Banerjee, S., et al. (2021).Threat of arsenic contamination, salinity and waterpollution in agricultural practices of Sundarban Delta, India, and mitigation strategies. SN Applied Sciences General, 3, 560. https://doi.org/10.1007/s42452-021-04544-1 DOI: https://doi.org/10.1007/s42452-021-04544-1

Özkara, A., Akyıl, D., & Konuk, M. (2016). Pesticides, environmental pollution, and health. In M.L. Larramendy & S. Soloneski (Eds.) Environmental Health Risk-Hazardous Factors to Living Species; IntechOpen: london, UK. DOI: 10.5772/63094 DOI: https://doi.org/10.5772/63094

Pande, N., & Nayak, G.N. (2013). Understanding distribution and abundance of metals with space andtime in estuarine mudflat sedimentary environment. Environmental Earth Sciences, 70, 2561–2575. https://doi.org/10.1007/s12665-013-2298-y. DOI: https://doi.org/10.1007/s12665-013-2298-y

Pandey, L. K., Park, J., Son, D. H., Kim, W., et al. (2019). Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Science of The Total Environment, 51, 323–33. doi:10.1016/j.scitotenv.2018.09.057. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.057

Qiu, Y.W., Yu, K.F., Zhang, G. & Wang, W. X. (2011). Accumulation and portioning of seven trace metals in mangroves and sediment cores from three estuaries wetlands of Hainan Island, China Journal of Materials, 190, 631-638. DOI: https://doi.org/10.1016/j.jhazmat.2011.03.091

Rodríguez-Barroso, M. R., Ramírez-del Solar, M., Blanco, E., Quiroga, J. M., & García-Morales, J. L. (2008). Qualitative estimation of heavy metals in marine sediment using thermal analysis. Soil and Sediment Contamination, 17, 107–120. DOI: https://doi.org/10.1080/15320380701870260

Rozaini, M.Z.H., Ramli, A.N., & Jaafar, M. (2010). The determination of heavy metal concentration in sediment from Kerteh River, Terengganu. Journal of Sustainability Science and Management, 5, 1–11.

Sarmani, S.B. (1989). The determination of heavy metals in water, suspended materials and sediments from Langat River, Malaysia. Hydrobiologia, 176, 233–238, doi:http://dx.doi.org/10.1007/ BF00026558. DOI: https://doi.org/10.1007/978-94-009-2376-8_21

Sericano, J.L, Wade, T.L, & Jackson, T.J. (1995). Trace organic contamination in the Americas: An overview of the US national status and trends and the international mussel watch progammes. Marine Pollution Bulletin, 31, 214-225. DOI: https://doi.org/10.1016/0025-326X(95)00197-U

Singh, J.K., Kumar, P., & Kumar, R. (2020). Ecological risk assessment of heavy metal contamination in mangrove forest sediment of Gulf of Khambhat region, West Coast of India. SN Applied Sciences, 2, 2027. https://doi.org/10.1007/s42452-020-03890-w. DOI: https://doi.org/10.1007/s42452-020-03890-w

Suhaimi Elias, M., Shariff, I., Kamarudin, S., Shamsiah, A.R., & Yii, M.W. (2018). Assessment of toxic elements in sediments of Linggi River using NAA and ICP-MS techniques. Methods X, 5, 454–465. DOI: https://doi.org/10.1016/j.mex.2018.05.001

Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. DOI: https://doi.org/10.1007/s002540050473

Turekian, K.K., & Wedepohl, K.H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of Geological Society of America, 72, 175–92. DOI: https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

Yasin, M. Y., Yusoff, M. M., & Noor, N. M. (2019). Urban sprawl assessment using time seriesLULC and NDVI variation: a case study of Sepang Malaysia. Applied Ecology and Environmental Research, 17(3). 5583-5602. DOI: 10.15666/aeer/1703_55835602. DOI: https://doi.org/10.15666/aeer/1703_55835602

Yuan, C.G., Shi, J.B., He, B., Liu, J.F., Liang, L.N., & Jiang, G.B. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30, 769—783. DOI: http://dx.doi.org/ 10.1016/j.envint.2004.01.001. DOI: https://doi.org/10.1016/j.envint.2004.01.001

Yuan, X., Huang, H., Zeng, G., Li, H., et al. (2011). Totalconcentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresource Technology, 102, 4104–4110. DOI: https://doi.org/10.1016/j.biortech.2010.12.055

Zhang, X., Yan, L., Liu, J., Zhang, Z., & Tan, C. (2019). Removal of different kinds of heavy metalsbynovel PPG-nZVI beads and their application in simulated stormwater infiltration facility. Applied Sciences, 9, 4213. DOI: https://doi.org/10.3390/app9204213

Zine, H., Midhat, L., Hakkou, R., El Adnani, M., & Ouhammou, A. (2020). Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Scientific African, 10, 2468–2476. DOI: https://doi.org/10.1016/j.sciaf.2020.e00654

Zulkifli, S. Z., Siti, A. R., Ferdaus, M. Y., & Ahmad, I. (2014). Geochemical Fractionations of HeavyMetals in Sediments of Sepang Besar River, Malaysia. Acta Biologica Malaysiana, 3(1): 1-9. DOI: http://dx.doi.org/10.7593/abm/3.1.1.

Zvinowanda, C. M., Okonkwo, J. O., Agyei, N. M., Sekhula, M. M., & Sadiku, R. (2009). Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. Journal of Hazardous Materials, 164 (2-3), 884-891. DOI: https://doi.org/10.1016/j.jhazmat.2008.08.110

Downloads

Published

2022-08-30

How to Cite

Krishnan, K., AS, N., MY, C., & Balu, P. (2022). Assessment of trace element accumulation in surface sediment of Sepang Besar river, Malaysia. Journal of Experimental Biology and Agricultural Sciences, 10(4), 870–878. https://doi.org/10.18006/2022.10(4).870.878

Issue

Section

RESEARCH ARTICLES

Categories