Application of Fungi as Meat Alternatives in Industry: Mini Review
DOI:
https://doi.org/10.18006/2022.10(4).728.736Keywords:
Fungi, Meat alternatives, Nutritional values, Safety, Growth rateAbstract
Human consumption has outpaced meat production and manufacturing due to the rising human population and limited land for livestock agriculture. Meat consumption can have negative effects on human health, but meat production can negatively affect the environment by causing global warming and water pollution. Hence, this study produces the idea of using fungus as an alternative to replacing meat. Fungus is an ideal choice as a meat replacement because it has high nutritional content and a fast growth rate. The main objective of this review was to assess the nutritional potential of nine fungal species namely Fusarium venenatum, Neurospora intermedia, Tuber sp., Xerocomus badius, Ganoderma lucidum, Pleurotuseryngii, Agaricus bisporus, Pleurotus sajor-caju and Lentinula edodes and to determine which species is the best candidate for meat replacement. The nutritional values, toxicity, and growth rate of each fungus were assessed. Comparative data analysis suggests that F. venenatum, N. intermedia, P. eryngii, A. bisporus, P. sajor-caju, and L. edodes are found suitable for producing fungi-based meat.
References
Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional composition of meat. In M. S. Arshad (Ed) Meat science and nutrition, Intechopen, DOI: 10.5772/intechopen.77045. DOI: https://doi.org/10.5772/intechopen.77045
Alam, N., Yoon, K. N., Lee, J. S., Cho, H. J., et al. (2011). Dietary effect of Pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats. Saudi Journal of Biological Sciences, 18(4), 403–409.https://doi.org/10.1016/j.sjbs.2011.07.001 DOI: https://doi.org/10.1016/j.sjbs.2011.07.001
Atila, F. (2020). Comparative study on the mycelial growth and yield of Ganoderma lucidum (Curt.: Fr.) Karst. on different lignocellulosic wastes. Acta Ecologica Sinica, 40(2), 153-157. DOI: https://doi.org/10.1016/j.chnaes.2018.11.007
Battilani, P., Barbano, C., & Logrieco, A. (2008). Risk assessment and safety evaluation of mycotoxins in fruits. In R. Barkai-Golan, & N. Paster (Eds.) Mycotoxins in fruits and vegetables (pp. 1-26). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-374126-4.00001-2
Blumfield, M., Abbott, K., Duve, E., Cassettari, T., et al. (2020). Examining the health effects and bioactive components in Agaricus bisporus mushrooms: A scoping review. The Journal of Nutritional Biochemistry, 84, 108453. DOI: https://doi.org/10.1016/j.jnutbio.2020.108453
Boa, E. R. (2004). Wild edible fungi: a global overview of their use and importance to people. Non-wood forest products, 17. Rome: FAO.
Calvo, M. S., Mehrotra, A., Beelman, R. B., Nadkarni, G., et al. (2016). A Retrospective Study in Adults with Metabolic Syndrome: Diabetic Risk Factor Response to Daily Consumption of Agaricus bisporus (White Button Mushrooms). Plant Foods for Human Nutrition, 71(3), 245–251. DOI: https://doi.org/10.1007/s11130-016-0552-7
Cohen, N., Cohen, J., Asatiani, M. D., Varshney, V. K., et al. (2014). Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. International journal of medicinal mushrooms, 16(3), 273–291. DOI: https://doi.org/10.1615/IntJMedMushr.v16.i3.80
Cunha, I. M., Marques, M. L., Abreu, C., Bartolomé, B., et al. (2020). Anaphylaxis to Agaricus bisporus ingestion. Einstein (São Paulo), 18, 1-4. DOI: https://doi.org/10.31744/einstein_journal/2020RC5478
Curtain, F., & Grafenauer, S. (2019). Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients, 11(11), 2603. DOI: https://doi.org/10.3390/nu11112603
Elhusseiny, S. M., El-Mahdy, T. S., Awad, M. F., Elleboudy, N. S., et al. (2021). Antiviral, Cytotoxic, and Antioxidant Activities of Three Edible Agaricomycetes Mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. Journal of Fungi, 7(8), 645. DOI: https://doi.org/10.3390/jof7080645
Falandysz, J., Kojta, A., Jarzyńska, G., Drewnowska, M., et al. (2012). Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Additives & Contaminants: Part A, 29(6), 951-961. DOI: https://doi.org/10.1080/19440049.2012.662702
Farnworth, N. E., Robson, G. D., Trinci, A. P., & Wiebe, M. G. (2003). Trypsin-like protease (TLP) production in Fusarium oxysporum and Fusarium venenatum and use of the TLP promoter for recombinant protein (glucoamylase) production. Enzyme and Microbial Technology, 33(1), 85–91. DOI: https://doi.org/10.1016/S0141-0229(03)00084-X
Feeney, M. J., Dwyer, J., Hasler-Lewis, C. M., et al. (2014). Mushrooms and health summit proceedings. The Journal of Nutrition, 144(7), 1128S-1136S. DOI: https://doi.org/10.3945/jn.114.190728
Finnigan, T. J., Wall, B. T., Wilde, P. J., Stephens, F. B., et al. (2019). Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Current developments in nutrition, 3(6), nzz021. DOI: https://doi.org/10.1093/cdn/nzz021
Food and Drug Administration. (2020). Generally recognized as safe (GRAS) notice for mycoprotein as a food ingredient. U.S. Food and Drug Administration. Retrieved from https://www.fda.gov/media/145554/download
Gabriel, M. F., González-Delgado, P., Postigo, I., Fernández, J., et al. (2015). From respiratory sensitization to food allergy: Anaphylactic reaction after ingestion of mushrooms (Agaricus bisporus). Medical mycology case reports, 8, 14-16. DOI: https://doi.org/10.1016/j.mmcr.2015.02.003
Gmoser, R., Ferreira, J. A., Lundin, M., Taherzadeh, M. J., et al. (2018). Pigment production by the edible filamentous fungus Neurospora intermedia. Fermentation, 4(1), 11. DOI: https://doi.org/10.3390/fermentation4010011
Gmoser, R., Fristedt, R., Larsson, K., Undeland, I., et al. (2020). From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered, 11(1), 582-598. DOI: https://doi.org/10.1080/21655979.2020.1768694
Go, S. J., Byun, M. O., You, C. H., & Park, Y. H. (1984). Selection of Pleurotus sajor-caju as suitable species for cultivation under summer climatic conditions in Korea. The Korean Journal of Mycology, 12(2), 53-58.
Gogavekar, S. S., Rokade, S. A., Ranveer, R. C., Ghosh, J. S., et al. (2014). Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. Journal of food science and technology, 51(8), 1483-1491. DOI: https://doi.org/10.1007/s13197-012-0656-5
Goikoetxea, M. J., Fernández-Benítez, M., & Sanz, M. L. (2009). Food allergy to Shiitake (Lentinus edodes) manifested as oesophageal symptoms in a patient with probable eosinophilic oesophagitis. Allergologia et immunopathologia, 333-334. DOI: https://doi.org/10.1016/j.aller.2009.05.002
González, N., Marquès, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137, 109-341. DOI: https://doi.org/10.1016/j.foodres.2020.109341
Grotto, D., Bueno, D. C. R., de Almeida Ramos, G. K., da Costa, S. R., et al. (2016). Assessment of the safety of the shiitake culinary-medicinal mushroom, Lentinus edodes (agaricomycetes), in rats: Biochemical, hematological, and antioxidative parameters. International journal of medicinal mushrooms, 18(10), 861–870. DOI: https://doi.org/10.1615/IntJMedMushrooms.v18.i10.20
Hashempour‐Baltork, F., Hosseini, S. M., Assarehzadegan, M. A., Khosravi‐Darani, K., et al. (2020). Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. Journal of the Science of Food and Agriculture, 100(12), 4433-4441. DOI: https://doi.org/10.1002/jsfa.10483
Hoseyni, S. M., & Khosravi-Darani, M. M. K. (2010). Production and rheological evaluation of mycoprotein produced from Fusarium venenatum ATCC 20334 by surface culture method. Seed, 72, 48.
Hu, Q., Yuan, B., Wu, X., Du, H., et al. (2019). Dietary intake of Pleurotus eryngii ameliorated dextran‐sodium‐sulfate‐induced colitis in mice. Molecular nutrition & food research, 63(17), 1801265. DOI: https://doi.org/10.1002/mnfr.201801265
Hüttner, S., Johansson, A., Gonçalves Teixeira, P., Achterberg, P., et al. (2020). Recent advances in the intellectual property landscape of filamentous fungi. Fungal Biology and Biotechnology, 7(1), 1-17. DOI: https://doi.org/10.1186/s40694-020-00106-z
Ismail, I., Hwang, Y. H., & Joo, S. T. (2020). Meat analog as future food: A review. Journal of animal science and technology, 62(2), 111-120. DOI: https://doi.org/10.5187/jast.2020.62.2.111
Jacobson, M. F., & DePorter, J. (2018). Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Annals of Allergy, Asthma & Immunology, 120(6), 626–630. DOI: https://doi.org/10.1016/j.anai.2018.03.020
Jaworska, G., Pogoń, K., Skrzypczak, A., & Bernaś, E. (2015). Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption. Journal of food science and technology, 52(12), 7944-7953. DOI: https://doi.org/10.1007/s13197-015-1933-x
Jin, X., Beguerie, J. R., Sze, D. M. Y., & Chan, G. C. (2012). Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database of Systematic Reviews,6, 1-33. DOI: https://doi.org/10.1002/14651858.CD007731.pub2
Kalač, P. (2016). Edible mushrooms: chemical composition and nutritional value. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-804455-1.00002-3
Karimi, S., Mahboobi Soofiani, N., Lundh, T., Mahboubi, A., et al. (2019). Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: protein, lipid, and mineral composition. Fermentation, 5(4), 99. DOI: https://doi.org/10.3390/fermentation5040099
Kawai, J., Andoh, T., Ouchi, K., & Inatomi, S. (2014). Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice. Evidence-Based Complementary and Alternative Medicine, eCAM, 2014, 532389. https://doi.org/10.1155/2014/532389. DOI: https://doi.org/10.1155/2014/532389
Liu, B., Liu, X., Liu, F., Ma, H., et al. (2019). Growth improvement of Lolium multiflorum Lam. induced by seed inoculation with fungus suspension of Xerocomus badius and Serendipita indica. AMB Express, 9(1), 1-11. DOI: https://doi.org/10.1186/s13568-019-0865-7
Mao, L., van Arkel, J., Hendriks, W. H., Cone, J. W., et al. (2021). Assessing the nutritional quality of fungal treated wheat straw: Compounds formed after treatment with Ceriporiopsis subvermispora and Lentinula edodes. Animal Feed Science and Technology, 276, 114924. DOI: https://doi.org/10.1016/j.anifeedsci.2021.114924
Mazidi, M. N. I. B. H., Ibrahim, R., & Yaacob, N. D. (2020). The Growth Morphology and Yield of Grey Oyster Mushrooms (Pleurotus sajor-caju) Subjected to Different Durations of Acoustic Sound Treatment. IOP Conference Series: Materials Science and Engineering, 767(1), 012013 DOI: https://doi.org/10.1088/1757-899X/767/1/012013
Mendonça, C. N. D., Silva, P. M. C., Avelleira, J. C. R., Nishimori, F. S., et al. (2015). Shiitake dermatitis. Anais Brasileiros de Dermatologia, 90, 276-278. DOI: https://doi.org/10.1590/abd1806-4841.20153396
Michel, F., Hartmann, C., & Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, 104063. DOI: https://doi.org/10.1016/j.foodqual.2020.104063
Ministry of Health Malaysia. (2017). Recommended nutrient intakes for Malaysia. nutrition.moh. Retrieved from https://nutrition.moh.gov.my/wp-content/uploads/2017/05/FA-Buku-RNI.pdf
Mohamed, E. M. (2012). Chemical profile, agaritine and selenium content of Agaricus bisporus. Brazilian Archives of Biology and Technology, 55(6), 911–920. DOI: https://doi.org/10.1590/S1516-89132012000600015
Nadathur, S. R., Wanasundara, J. P. D., & Scanlin, L. (2017). Proteins in the diet: Challenges in feeding the global population. In S. R. Nadathur, J.P.D. Wanasundara, & L. Scanlin (Eds.) Sustainable protein sources (pp. 1-19), Academic Press. DOI: https://doi.org/10.1016/B978-0-12-802778-3.00001-9
Nair, R. B., Lennartsson, P. R., & Taherzadeh, M. J. (2016). Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express, 6(1), 1-10. DOI: https://doi.org/10.1186/s13568-016-0203-2
Nakano, S., Kinoshita, A., Obase, K., Nakamura, N., et al. (2020). Influence of pH on in vitro mycelial growth in three Japanese truffle species: Tuber japonicum, T. himalayense, and T. longispinosum. Mycoscience, 61(2), 58–61. DOI: https://doi.org/10.1016/j.myc.2019.12.001
Nie, Y., Zhang, P., Deng, C., Xu, L., et al. (2019). Effects of Pleurotus eryngii (mushroom) powder and soluble polysaccharide addition on the rheological and microstructural properties of dough. Food Science & Nutrition, 7(6), 2113-2122. DOI: https://doi.org/10.1002/fsn3.1054
Ohga, S. (1990). Growth Rate of Mycelium of Shiitake, Lentinus edodes, in Relation to Water Potential of Medium. Journal of the Faculty of Agriculture, Kyushu University, 34(4), 413–420. DOI: https://doi.org/10.5109/23908
Osadolor, O. A., Nair, R. B., Lennartsson, P. R., & Taherzadeh, M. J. (2017). Empirical and experimental determination of the kinetics of pellet growth in filamentous fungi: a case study using Neurospora intermedia. Biochemical engineering journal, 124, 115-121. DOI: https://doi.org/10.1016/j.bej.2017.05.012
Pacioni, G., Rapino, C., Zarivi, O., Falconi, A., et al. (2015). Truffles contain endocannabinoid metabolic enzymes and anandamide. Phytochemistry, 110, 104-110. DOI: https://doi.org/10.1016/j.phytochem.2014.11.012
Penn State Extension (2020, May 28). Adjusting and Monitoring Meat Animal Growth Rate. Retrieved from https://extension.psu.edu/adjusting-and-monitoring-meat-animal-growth-rate
Perkins, D. D., & Davis, R. H. (2000). Evidence for Safety of Neurospora Species for Academic and Commercial Uses. Applied and Environmental Microbiology, 66(12), 5107–5109. DOI: https://doi.org/10.1128/AEM.66.12.5107-5109.2000
Proskura, N., Podlasińska, J., & Skopicz-Radkiewicz, L. (2017). Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland. Chemosphere, 168, 106-111. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.003
Rahman, T., & Choudhury, M. B. K. (2012). Shiitake mushroom: a tool of medicine. Bangladesh Journal of Medical Biochemistry, 5(1), 24-32. DOI: https://doi.org/10.3329/bjmb.v5i1.13428
Rashid, H. M., Abed, I. A., & Owaid, M. N. (2018). Mycelia growth performance of Agaricus bisporus in culture media of composts supplemented with Sesbania sesban straw and phosphate rock. Current Research in Environmental & Applied Mycology, 8(3), 323–330. DOI: https://doi.org/10.5943/cream/8/3/4
Reihani, S. F. S., & Khosravi-Darani, K. (2018). Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Applied Food Biotechnology, 5(4), 243-352.
Reis, F. S., Barros, L., Martins, A., & Ferreira, I. C. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food and Chemical Toxicology, 50(2), 191-197. DOI: https://doi.org/10.1016/j.fct.2011.10.056
Ritson, C. (2020). Population growth and global food supplies. In M. Rutland, A. Turner, (eds) Food Education and Food Technology in School Curricula (pp. 261-271). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-39339-7_17
Rodger, G. (2001). Mycoprotein—a meat alternative new to the US Production and properties of mycoprotein as a meat alternative. Food Technology, 55(7), 36-41.
Roy, B., Hagappa, A., Ramalingam, Y. D., & Mahalingam, N. (2021). A review on lab-grown meat: Advantages and disadvantages. Quest International Journal of Medical and Health Sciences, 4(1), 19-24.
Saritha, K., Prakash, B., Khilare, V., Khedkar, G., et al. (2016). Mushrooms and Truffles: Role in the Diet. Encyclopedia of Food and Health, 1–8. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00473-6
Souza Filho, P. F., Andersson, D., Ferreira, J. A., & Taherzadeh, M. J. (2019). Mycoprotein: environmental impact and health aspects. World Journal of Microbiology and Biotechnology, 35(10), 1-8. DOI: https://doi.org/10.1007/s11274-019-2723-9
Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., et al. (2018). Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal biology and biotechnology, 5(1), 1-10. DOI: https://doi.org/10.1186/s40694-018-0050-9
Usman, M., Murtaza, G., & Ditta, A. (2021). Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): a review. Applied Sciences, 11(13), 5943. DOI: https://doi.org/10.3390/app11135943
Uysal, E., & Soylu, M. K. (2016). Pleurotus eryngii Türünün Farklı İzolatlarına Ait Mantarların Bazı Mineral Besin İçeriklerinin Belirlenmesi. Turkish Journal of Agriculture-Food Science and Technology, 4(3), 139-143. DOI: https://doi.org/10.24925/turjaf.v4i3.139-143.567
Wachtel-Galor, S., Yuen, J., Buswell, J. A., & Benzie, I. F. (2011). Ganoderma lucidum (Lingzhi or Reishi). Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition, CRC Press.
Wang, J., Cao, B., Zhao, H., & Feng, J. (2017). Emerging roles of Ganoderma lucidum in anti-aging. Aging and disease, 8(6), 691. DOI: https://doi.org/10.14336/AD.2017.0410
Wiebe, M. (2002). Myco-protein from Fusarium venenatum: a well-established product for human consumption. Applied microbiology and biotechnology, 58(4), 421-427. DOI: https://doi.org/10.1007/s00253-002-0931-x
Wiebe, M. G. (2004). QuornTM Myco-protein-Overview of a successful fungal product. Mycologist, 18(1), 17-20. DOI: https://doi.org/10.1017/S0269915X04001089
Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265. DOI: https://doi.org/10.1039/C5FO01530H
Yan, X., Wang, Y., Sang, X., & Fan, L. (2017). Nutritional value, chemical composition and antioxidant activity of three Tuber species from China. AMB Express, 7(1), 1-8. DOI: https://doi.org/10.1186/s13568-017-0431-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.