Phytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewaterPhytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewater

Authors

DOI:

https://doi.org/10.18006/2022.10(3).511.523

Keywords:

Phytoremediation, Oryza sativa, Heavy Metals, Translocation Factor

Abstract

India is the largest producer of leather and leather products. Tannery industries use a large number of synthetic chemicals for the processing of leather and generate a huge amount of wastewater containing a large amount of potentially toxic heavy metals (PTHMs) making them problematic for next-door soil and water system. Currently, phytoremediation is an inexpensive green technology used to move, eradicate, and stabilized heavy metal contamination from contaminated sludge, soil, and wastewater. In this study, the accumulation and distribution of PTHMs found in tannery wastewater and their physio-biochemical effects on Oryza sativa L. have been studied by ICP-MS, GC-MS, and biochemical analysis. The plant was grown in the soil spiked with a mixture of metals (Cr, Fe and Ni) and their five-level of treatment T1 (25mg/kg); T2 (50mg/kg); T3 (100mg/kg); T4 (200mg/kg) and T5 (400mg/kg). During the experiments, various morphological attributes, oxidative stress, enzymatic activities, chlorophyll, and protein content at the different stage was measured. Further, metal accumulation pattern in different parts of plants was also measured. Results of the study revealed that plant root, shoot length, chlorophyll content, and enzymatic activities were significantly reduced after the treatment with 200 mg/kg PTHMs; whereas oxidative stress was increase compared to control levels.  Further, treatment of PTHMs suggested that the rice plant (Oryza sativa L.) is well adapted to tolerate and accumulate a high level of heavy metals (up to 200mg/kg) in the root and shoot of the treated plants. If it is treated above this, then seeds were also affected and not safe for human consumption.

References

Ahmed, S., Mahdi, M. M., Nurnabi, M., Alam, M. Z., & Choudhury, T. R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicology Reports, 9, 346-355. DOI: https://doi.org/10.1016/j.toxrep.2022.03.009

Alrawiq, N., Khairiah, J., Talib, M. L., Ismail, B. S., & Anizan, I. (2014). Accumulation and translocation of heavy metals in soil and paddy plant samples collected from rice fields irrigated with recycled and non-recycled water in MADA Kedah, Malaysia. International Journal of ChemTech Research, 6(4), 2347-2356.

Amari, T., Ghnaya, T., & Abdelly, C. (2017). Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99-110. DOI: https://doi.org/10.1016/j.sajb.2017.03.011

American Public Health Association. (2005). Standard Methods for the Examination of Water and Wastewater. 21st edn. American Public Health Association (APHA) Washington, D.C.: APHA-AWWA-WEF. Available at https://www.worldcat.org/title/standard-methods-for-the-examination-of-water-and-wastewater/oclc/ 156744115?referer=di&ht=edition

American Public Health Association. (2021). Standard Methods for the Examination of Water and Wastewater, 23rd edn. American Public Health Association (APHA), Available at https://wef.org/resources/publications/books/StandardMethods/

Appiah-Brempong, M., Essandoh, H. M. K., Asiedu, N. Y., Dadzie, S. K., & Momade, F. W. Y. (2022). Artisanal tannery wastewater: quantity and characteristics. Heliyon, 8(1), e08680. DOI: https://doi.org/10.1016/j.heliyon.2021.e08680

Baker, A., & Walker, P. (1990). Ecophysiology of metal uptake by tolerant plants: Heavy metal tolerance in plants. In: A.J. Shaw (ed.) Evolutionary Aspects. Boca Raton, CRC Press.

Bharagava, R. N., Chandra, R., & Rai, V. (2008). Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresource Technology, 99(17), 8316-8324. DOI: https://doi.org/10.1016/j.biortech.2008.03.002

Chowdhary, P., Yadav, A., Singh, R., Chandra, R., et al. (2018). Stress response of Triticum aestivum L. and Brassica juncea L. against heavy metals growing at distillery and tannery wastewater contaminated site. Chemosphere, 206, 122-131. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.156

Diarra, I., Kotra, K. K., & Prasad, S. (2021). Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi–metal contaminated soil. Chemosphere, 273, 128483. DOI: https://doi.org/10.1016/j.chemosphere.2020.128483

Evangelou, M. W., Papazoglou, E. G., Robinson, B. H., & Schulin, R. (2015). Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In A. Ansari, S. Gill, R. Gill, G. Lanza, L. Newman, (eds) Phytoremediation (pp. 115-132). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-10395-2_9

Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., et al. (2016). Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68. DOI: https://doi.org/10.1016/j.sajb.2015.11.006

Gupta, A. K., & Sinha, S. (2007). Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresource Technology, 98(9), 1788-1794. DOI: https://doi.org/10.1016/j.biortech.2006.06.028

Hansen, É., de Aquim, P. M., & Gutterres, M. (2021). Current technologies for post-tanning wastewater treatment: a review. Journal of Environmental Management, 294, 113003. DOI: https://doi.org/10.1016/j.jenvman.2021.113003

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198. DOI: https://doi.org/10.1016/0003-9861(68)90654-1

Jamla, M., Khare, T., Joshi, S., Patil, S., Penna, S., & Kumar, V. (2021). Omics approaches for understanding heavy metal responses and tolerance in plants. Current Plant Biology, 27, 100213. DOI: https://doi.org/10.1016/j.cpb.2021.100213

Javed, M. T., Tanwir, K., Akram, M. S., Shahid, M., Niazi, N. K., & Lindberg, S. (2019). Phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In M. Hasanuzzaman, M. N. V. Prasad, M. Fujita (eds.) Cadmium toxicity and tolerance in plants (pp. 495-529). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814864-8.00020-6

Kahangwa, C. A., Nahonyo, C. L., Sangu, G., & Nassary, E. K. (2021). Assessing phytoremediation potentials of selected plant species in restoration of environments contaminated by heavy metals in gold mining areas of Tanzania. Heliyon, 7(9), e07979. DOI: https://doi.org/10.1016/j.heliyon.2021.e07979

Khorobrykh, S., Havurinne, V., Mattila, H., & Tyystjärvi, E. (2020). Oxygen and ROS in photosynthesis. Plants, 9(1), 91. DOI: https://doi.org/10.3390/plants9010091

Kicińska, A., Pomykała, R., & Izquierdo‐Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), e13203. DOI: https://doi.org/10.1111/ejss.13203

Lakshmi, K., Jenifer, G., Aishwarya, C., Divya, K., et al. (2021). New approaches in bioremediation of heavy metals from tannery effluent using microorganisms. In M. P. Shah, Susana, V. Kumar (eds.) New Trends in Removal of Heavy Metals from Industrial Wastewater (pp. 487-524). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-822965-1.00020-9

Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society of Transaction, 11 (5), 591–592. DOI: https://doi.org/10.1042/bst0110591

Liu, W. X., Shen, L. F., Liu, J. W., Wang, Y. W., & Li, S. R. (2007). Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 79(2), 209-213. DOI: https://doi.org/10.1007/s00128-007-9164-0

Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Maehly, A.C., & Chance, B. (1954). The assay of catalases and peroxidases. Methods of Biochemical Analysis, 1, 357–424. DOI: https://doi.org/10.1002/9780470110171.ch14

Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849-854. DOI: https://doi.org/10.1016/S0006-291X(72)80218-3

Olawale, O., Raphael, D. O., Akinbile, C. O., & Ishuwa, K. (2021). Comparison of heavy metal and nutrients removal in Canna indica and Oryza sativa L. based constructed wetlands for piggery effluent treatment in north-central Nigeria. International Journal of Phytoremediation, 23(13), 1382-1390. DOI: https://doi.org/10.1080/15226514.2021.1900062

Phusantisampan, T., Meeinkuirt, W., Saengwilai, P., Pichtel, J., & Chaiyarat, R. (2016). Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments. Environmental Science and Pollution Research, 23(19), 20027-20038. DOI: https://doi.org/10.1007/s11356-016-7229-5

Pajević, S., Borišev, M., Nikolić, N., Arsenov, D. D., Orlović, S., Župunski, M. (2016). Phytoextraction of Heavy Metals by Fast-Growing Trees: A Review. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, L. Newman (eds.) Phytoremediation: Management of Environmental Contaminants Volume 3 (pp 29–64); Springer International Publishing: Cham. DOI: https://doi.org/10.1007/978-3-319-40148-5_2

Qamer, Z., Chaudhary, M. T., Du, X., Hinze, L., & Azhar, M. T. (2021). Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. Journal of Cotton Research, 4(1), 1-9. DOI: https://doi.org/10.1186/s42397-021-00086-4

Ranieri, E., D’Onghia, G., Ranieri, F., Petrella, A., Spagnolo, V., & Ranieri, A. C. (2021). Phytoextraction of Cr (VI)-Contaminated Soil by Phyllostachys pubescens: A Case Study. Toxics, 9(11), 312. DOI: https://doi.org/10.3390/toxics9110312

Sarker, U., & Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific reports, 8(1), 1-12. DOI: https://doi.org/10.1038/s41598-018-34944-0

Satpathy, D., Reddy, M. V., & Dhal, S. P. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed research international, 2014, 1-11. DOI: https://doi.org/10.1155/2014/545473

Saxena, G., Chandra, R., & Bharagava, R. N. (2016). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Reviews of Environmental Contamination and Toxicology, 240, 31-69. DOI: https://doi.org/10.1007/398_2015_5009

Senatore, V., Zarra, T., Galang, M. G., Oliva, G., et al. (2021). Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. Water, 13(24), 3503. DOI: https://doi.org/10.3390/w13243503

Shi, L., Feng, L., Tong, Y., Jia, J., et al. (2021). Genome wide profiling of miRNAs relevant to the DNA damage response induced by hexavalent chromium exposure (DDR-related miRNAs in response to Cr (VI) exposure). Environment International, 157, 106782. DOI: https://doi.org/10.1016/j.envint.2021.106782

Sidhu, G.P.S., Singh, H.P., Batish, D.R., & Kohli, R.K. (2016). Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiology and Biochemistry, 105, 290–296. https://doi.org/10.1016/ j.plaphy.2016.05.019. DOI: https://doi.org/10.1016/j.plaphy.2016.05.019

Singh, U.V., Abhishek, A., Bhaskar, M., Tandan, N., Ansari, N.G., & Singh, N.P. (2015). Phyto-extraction of heavy metals and biochemical changes with Brassica nigra L. grown in rayon grade paper mill effluent irrigated soil. Bioinformation,11, 138–144. DOI: https://doi.org/10.6026/97320630011138

Singh, D., Sharma, N. L., Singh, C. K., Yerramilli, V., et al. (2021). Chromium (VI)-Induced Alterations in Physio-Chemical Parameters, Yield, and Yield Characteristics in Two Cultivars of Mungbean (Vigna radiata L.). Frontiers in plant science, 2059. DOI: https://doi.org/10.3389/fpls.2021.735129

Singh, D., Singh, C. K., Singh, D., Sarkar, S. K., et al. (2022). Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars. Scientific Reports, 12(1), 1-17. DOI: https://doi.org/10.1038/s41598-022-11869-3

Urbina-Suarez, N. A., Machuca-Martínez, F., & Barajas-Solano, A. F. (2021). Advanced oxidation processes and biotechnological alternatives for the treatment of tannery wastewater. Molecules, 26(11), 3222. DOI: https://doi.org/10.3390/molecules26113222

VonHandorf, A., Zablon, H. A., & Puga, A. (2021). Hexavalent chromium disrupts chromatin architecture. Seminars in Cancer Biology, 76, 54-60. DOI: https://doi.org/10.1016/j.semcancer.2021.07.009

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. DOI: https://doi.org/10.3389/fpls.2020.00359

Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2-3), 456-464. DOI: https://doi.org/10.1016/j.scitotenv.2006.01.016

Downloads

Published

2022-06-26

How to Cite

Katiyar, A., Bhaskar, M. ., Singh, A., Sharma, D., Abhishek, A. ., & Garg, V. . (2022). Phytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewaterPhytoremediation of chromium, iron and nickel by Indian Rice Plant (Oryza sativa L.): An opportunity for management of multi-metal contaminated tannery wastewater. Journal of Experimental Biology and Agricultural Sciences, 10(3), 511–523. https://doi.org/10.18006/2022.10(3).511.523

Issue

Section

RESEARCH ARTICLES

Categories