Computational and pharmacokinetic evaluation of Distichochlamys citrea compounds for cancer treatment

Authors

DOI:

https://doi.org/10.18006/2025.13(2).137.150

Keywords:

Apoptosis, bcl-xl protein, Black ginger, Cancer, Distichochlamys citrea

Abstract

The apoptosis pathway plays a crucial role in regulating cell survival and death. This regulatory mechanism involves two main groups of proteins: anti-apoptotic and pro-apoptotic members of the Bcl-2 family. An imbalance that favors anti-apoptotic proteins, particularly the overexpression of Bcl-xL, is strongly associated with cancer progression across various tumor types. As a result, targeted cancer therapies focusing on Bcl-xL have been the subject of intense research in recent decades. Studies exploring natural compounds from medicinal plants present a promising complementary approach to cancer treatment alongside traditional anticancer drugs. This study examined compounds identified in Distichochlamys citrea, an endemic Vietnamese plant known for its anticancer properties. We employed molecular docking and molecular dynamics simulations to identify compounds from D. citrea with a strong binding affinity toward the Bcl-xL protein. Findings of the present study revealed that two molecules, i.e., Platyphyllone and 5-O-caffeoylquinic acid, bind stably and tightly to the hydrophobic groove of Bcl-xL, suggesting potential inhibitory effects. In-silico analyses of their pharmacokinetic and pharmacodynamic properties indicate that these molecules possess anticancer, antimetastatic, anti-mitotic, and apoptosis-inducing characteristics. Furthermore, both compounds adhere well to Lipinski's rule and exhibit desirable drug-like properties, making them potential candidates for high-dose oral administration without toxicity. In addition to being present in D. citrea, Platyphyllone and 5-O-caffeoylquinic acid are also found in many commonly consumed plants. These findings contribute to the scientific basis for further investigation into the molecular structure and bioactivity of Platyphyllone and 5-O-caffeoylquinic acid as potential cancer treatments.

Author Biographies

Quan Ke Thai, Faculty of Natural Science Education, Saigon University, 273 An Duong Vuong, Ward 2, District 5, Ho Chi Minh City, Vietnam, 700000.

Faculty of Natural Science Education, Saigon University, 273 An Duong Vuong, Ward 2, District 5, Ho Chi Minh City, Vietnam, 700000.

Phuoc Huynh, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam.

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam.

Ba-Hai Nguyen, Faculty of Pharmacy, Binh Duong Medical College, 529 Le Hong Phong, Phu Hoa Ward, Thu Dau Mot City, Binh Duong Province, VietNam

Faculty of Pharmacy, Binh Duong Medical College, 529 Le Hong Phong, Phu Hoa Ward, Thu Dau Mot City, Binh Duong Province, VietNam

Huyen Nguyen Thi Thuong, Department of Biology, Ho Chi Minh City University of Education, 280 An Duong Vuong Ward 4 District 5, Ho Chi Minh City, Vietnam.

Department of Biology, Ho Chi Minh City University of Education, 280 An Duong Vuong Ward 4 District 5, Ho Chi Minh City, Vietnam.

References

Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V J., et al. (2021). PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. DOI: https://doi.org/10.1093/nar/gkab294

Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E., & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers (Basel), 12(4), 1050. DOI: https://doi.org/10.3390/cancers12041050

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513-W520. DOI: https://doi.org/10.1093/nar/gkae303

Barbosa, G. B., Jayasinghe, N. S., Natera, S. H. A., Inutan, E. D., Peteros, N. P., & Roessner, U. (2017). From common to rare Zingiberaceae plants - A metabolomics study using GC-MS. Phytochemistry, 140, 141-150. DOI: https://doi.org/10.1016/j.phytochem.2017.05.002

Billen, L. P., Kokoski, C. L., Lovell, J. F., Leber, B., & Andrews, D. W. (2008). Bcl-XL inhibits membrane permeabilization by competing with Bax. PLOS Biology, 6(6), e147. DOI: https://doi.org/10.1371/journal.pbio.0060147

Boon, N. J., Oliveira, R. A., Körner, P.R., Kochavi, A., Mertens, S., Malka, Y., et al. (2024). DNA damage induces p53-independent apoptosis through ribosome stalling. Science, 384(6697), 785-792. DOI: https://doi.org/10.1126/science.adh7950

Borrás, C., Mas-Bargues, C., Román-Domínguez, A., Sanz-Ros, J., Gimeno-Mallench, L., Inglés, M., et al. (2020). BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. International Journal of Molecular Sciences, 21(2), 418. DOI: https://doi.org/10.3390/ijms21020418

Boyenle, I. D., Ogunlana, A. T., Kehinde Oyedele, A.Q., Olokodana, B. K., Owolabi, N., Salahudeen, A., et al. (2023). Reinstating apoptosis using putative Bcl-xL natural product inhibitors: Molecular docking and ADMETox profiling investigations. Journal of Taibah University Medical Sciences, 18(3), 461-469. DOI: https://doi.org/10.1016/j.jtumed.2022.10.014

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229-263. DOI: https://doi.org/10.3322/caac.21834

Chan, E. W. C., Lim, Y. Y., Ling, S. K., Tan, S. P., Lim, K. K., & Khoo, M. G. H. (2009). Caffeoylquinic acids from leaves of Etlingera species (Zingiberaceae). LWT - Food Science and Technology, 42(5), 1026-1030. DOI: https://doi.org/10.1016/j.lwt.2009.01.003

Chaudhary, T., Chahar, A., Sharma, J. K., Kaur, K., & Dang, A. (2015). Phytomedicine in the Treatment of Cancer: A Health Technology Assessment. Journal of Clinical and Diagnostic Research, 9(12), Xc04-xc09. DOI: https://doi.org/10.7860/JCDR/2015/15701.6913

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. DOI: https://doi.org/10.1038/srep42717

Du, X., Zhang, M., Wang, S., Li, J., Zhang, J., & Liu, D. (2024). Ethnopharmacology, chemical composition and functions of Cymbopogon citratus. Chinese Herbal Medicines, 16(3), 358-374. DOI: https://doi.org/10.1016/j.chmed.2023.07.002

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., et al. (2014). Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds, 50(3), 444-457. DOI: https://doi.org/10.1007/s10593-014-1496-1

Fuentes, E., & Palomo, I. (2014). Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascular Pharmacology, 63(3), 155-161. DOI: https://doi.org/10.1016/j.vph.2014.10.006

Garcia-Oliveira, P., Otero, P., Pereira, A. G., Chamorro, F., Carpena, M., Echave, J., et al. (2021). Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel, Switzerland), 14(2), 157. DOI: https://doi.org/10.3390/ph14020157

Jahagirdar, S., Praveen Kumar, H., Bhat, S. S., Poddar, A., Chattaraj, P. K., Ahmad, S. F., et al. (2024). In silico evaluations of phytochemicals from Withania somnifera exhibiting anticancer activity against NAD[P]H-quinone oxidoreductase. Human & Experimental Toxicology, 43, 9603271241291399. DOI: https://doi.org/10.1177/09603271241291399

Kaloni, D., Diepstraten, S. T., Strasser, A., & Kelly, G. L. (2023). BCL-2 protein family: attractive targets for cancer therapy. Apoptosis, 28(1), 20-38. DOI: https://doi.org/10.1007/s10495-022-01780-7

Katta, B., Vijayakumar, C., Dutta, S., Dubashi, B., & Nelamangala Ramakrishnaiah, V. P. (2023). The Incidence and Severity of Patient-Reported Side Effects of Chemotherapy in Routine Clinical Care: A Prospective Observational Study. Cureus, 15(4), e38301. DOI: https://doi.org/10.7759/cureus.38301

Kour, G., Haq, S. A., Bajaj, B. K., Gupta, P. N., & Ahmed, Z. (2021). Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacological Research, 169, 105618. DOI: https://doi.org/10.1016/j.phrs.2021.105618

Leitl, K. D., Sperl, L. E., & Hagn, F. (2024). Preferred inhibition of pro-apoptotic Bak by BclxL via a two-step mechanism. Cell Reports, 43(8), 114526. DOI: https://doi.org/10.1016/j.celrep.2024.114526

Li, M., Wang, D., He, J., Chen, L., & Li, H. (2020). Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacological Research, 151, 104547. DOI: https://doi.org/10.1016/j.phrs.2019.104547

Liu, C., Ding, X., Li, G., Zhang, Y., Shao, Y., Liu, L., et al. (2023). Targeting Bcl-xL is a potential therapeutic strategy for extranodal NK/T cell lymphoma. iScience, 26(8), 107369. DOI: https://doi.org/10.1016/j.isci.2023.107369

Loo, L. S. W., Soetedjo, A. A. P., Lau, H. H., Ng, N. H. J., Ghosh, S., Nguyen, L., et al. (2020). BCL-xL/BCL2L1 is a critical anti-apoptotic protein that promotes the survival of differentiating pancreatic cells from human pluripotent stem cells. Cell Death & Disease, 11(5), 378. DOI: https://doi.org/10.1038/s41419-020-2589-7

Lopez, A., Reyna, D. E., Gitego, N., Kopp, F., Zhou, H., Miranda-Roman, M. A., et al. (2022). Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nature Communications, 13(1), 1199. DOI: https://doi.org/10.1038/s41467-022-28741-7

Moteki, H., Hibasami, H., Yamada, Y., Katsuzaki, H., Imai, K., & Komiya, T. (2002). Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncology Reports, 9(4), 757-760. DOI: https://doi.org/10.3892/or.9.4.757

Neijenhuis, T., van Keulen, S. C., & Bonvin, A. M. J. J. (2022). Interface refinement of low- to medium-resolution Cryo-EM complexes using HADDOCK2.4. Structure, 30(4), 476-484. DOI: https://doi.org/10.1016/j.str.2022.02.001

Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. DOI: https://doi.org/10.1021/acs.jnatprod.5b01055

Newman, M. F. (1995). Distichochlamys, a new genus from Vietnam. Edinburgh Journal of Botany, 52(1), 65-69. DOI: https://doi.org/10.1017/S096042860000192X

Nguyen, T. V. A., Nguyen Thi, K.O., Nguyen, N. P., & Le, H. L. (2023). Antioxidant and antithrombotic activities of the Distichochlamys citrea leaves extract. Vietnam Journal of Biotechnology, 21(4), 681-697. DOI: https://doi.org/10.15625/1811-4989/18629

O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. DOI: https://doi.org/10.1186/1758-2946-3-33

Pham, T. V., Hoang, H. N. T., Nguyen, H. T., Nguyen, H. M., Huynh, C. T., Vu, T. Y., et al. (2021). Anti-Inflammatory and Antimicrobial Activities of Compounds Isolated from Distichochlamys benenica. BioMed Research International, 2021, 6624347. DOI: https://doi.org/10.1155/2021/6624347

Piccolo, V., Maisto, M., Schiano, E., Iannuzzo, F., Keivani, N., Manuela Rigano, M., et al. (2024). Phytochemical investigation and antioxidant properties of unripe tomato cultivars (Solanum lycopersicum L.). Food Chemistry, 438, 137863. DOI: https://doi.org/10.1016/j.foodchem.2023.137863

Piha-Paul, S. A., Oh, D.Y., Ueno, M., Malka, D., Chung, H. C., Nagrial, A., et al. (2020). Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. International Journal of Cancer, 147(8), 2190-2198. DOI: https://doi.org/10.1002/ijc.33013

Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12, 985363. DOI: https://doi.org/10.3389/fonc.2022.985363

Rutz, A., Sorokina, M., Galgonek, J., Mietchen, D., Willighagen, E., Gaudry, A., et al. (2022). The LOTUS initiative for open knowledge management in natural products research. eLife, 11, e70780. DOI: https://doi.org/10.7554/eLife.70780

Ryu, M., Sung, C. K., Im, Y. J., & Chun, C. (2020). Activation of JNK and p38 in MCF-7 Cells and the In Vitro Anticancer Activity of Alnus hirsuta Extract. Molecules (Basel, Switzerland), 25(5), 1073. DOI: https://doi.org/10.3390/molecules25051073

Santos-Martins, D., Solis-Vasquez, L., Tillack, A. F., Sanner, M. F., Koch, A., & Forli, S. (2021). Accelerating AutoDock4 with GPUs and Gradient-Based Local Search. Journal of Chemical Theory and Computation, 17(2), 1060-1073. DOI: https://doi.org/10.1021/acs.jctc.0c01006

Saud, S., & Salamatullah, A. M. (2021). Relationship between the Chemical Composition and the Biological Functions of Coffee.Molecules (Basel, Switzerland), 26(24), 7634. DOI: https://doi.org/10.3390/molecules26247634

Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2006). Protein-ligand docking: current status and future challenges. Proteins, 65(1), 15-26. DOI: https://doi.org/10.1002/prot.21082

Stevens, M., & Oltean, S. (2019). Modulation of the Apoptosis Gene Bcl-x Function Through Alternative Splicing. Frontiers in Genetics, 10, 804. DOI: https://doi.org/10.3389/fgene.2019.00804

Van Chen, T., Cuong, T. D., Quy, P. T., Bui, T. Q., Van Tuan, L., Van Hue, N., et al. (2022). Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. Chemicke Zvesti, 76(9), 5655-5675. DOI: https://doi.org/10.1007/s11696-022-02273-2

Van Chen, T., Thong, C. L. T., Tran-Trung, H., Nhung, N. T. A., & Triet, N. T. (2023). Phytochemical Constituents Isolated From Distichochlamys citrea M.F. Newman Rhizomes and Their Antioxidant and α-glucosidase Inhibitory Activities. Natural Product Communications, 18(5), 1934578X231177878. DOI: https://doi.org/10.1177/1934578X231177878

Wang, H., Guo, M., Wei, H., & Chen, Y. (2023). Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival Bcl-2 family proteins. Computational and Structural Biotechnology Journal, 21, 3760-3767. DOI: https://doi.org/10.1016/j.csbj.2023.07.017

Wang, L., Doherty, G. A., Judd, A. S., Tao, Z.F., Hansen, T. M., Frey, R. R., et al. (2020). Discovery of A-1331852, a First-in-Class, Potent, and Orally-Bioavailable BCL-XL Inhibitor. ACS Medicinal Chemistry Letters, 11(10), 1829-1836. DOI: https://doi.org/10.1021/acsmedchemlett.9b00568

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296-w303. DOI: https://doi.org/10.1093/nar/gky427

Zhang, L., Li, J., Tian, D., Sun, L., Wang, X., & Tian, M. (2020). Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death &Disease, 11(1), 1. DOI: https://doi.org/10.1038/s41419-019-2182-0

Downloads

Published

2025-05-05

How to Cite

Thai, Q. K., Huynh, P., Nguyen, B.-H., & Thuong, H. N. T. (2025). Computational and pharmacokinetic evaluation of Distichochlamys citrea compounds for cancer treatment. Journal of Experimental Biology and Agricultural Sciences, 13(2), 137–150. https://doi.org/10.18006/2025.13(2).137.150

Issue

Section

RESEARCH ARTICLES

Categories