A detailed investigation to study the pattern of the interplay of Cyclic AMP Receptor Protein (CRP) of E. coli with its different classes of promoters

Authors

DOI:

https://doi.org/10.18006/2022.10(1).266.277

Keywords:

Biphasic nature, Transcription activation, CAP, CRP, AR1, AR2, AR3

Abstract

The activity of most of the promoters in Escherichia coli, involved in the metabolism of sugars other than glucose, is controlled by a CRP (cAMP receptor protein) or CAP (catabolite activator protein). CRP-dependent promoters are differentiated into various classes (Class I, Class II, and Class III) based on its cognate binding site’s position on DNA. The promoters regulated by CAP are differentially regulated by this transcriptional factor and it is also imperative to mention that these promoters vary greatly in respect to the binding site of CAP to its cognate binding site, it has also been reported that either it overlaps with the binding site of RNA polymerase or it present upstream to it. In Class I CAP-dependent promoters, a particular CAP molecule makes protein-protein interaction for the start of transcription. In Class II CAP-dependent promoters, a particular CAP molecule makes multiple interactions for the start of transcription. At last, in Class III-CAP dependent promoters, more than one CAP molecule is involved and activation of transcription is done synergistically. It has also been documented that CAP shows a kind of biphasic behavior in some promoters. So, the main focus of this work is to find out whether this biphasic behavior is true for other E. coli promoters as well. Experiments have been performed to know more about this biphasic nature and the various patterns of interactions of catabolite activator protein (CAP) of E. coli with its different classes of promoters.

References

Bell, A., Gaston, K., Williams, R., Chapman, K., et al. (1990). Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids Research, 18(24), 7243–7250. https://doi.org/10.1093/nar/18.24.7243. DOI: https://doi.org/10.1093/nar/18.24.7243

Busby, S., & Ebright, R. H. (1994). Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell, 79(5), 743–746. https://doi.org/10.1016/0092-8674(94)90063-9. DOI: https://doi.org/10.1016/0092-8674(94)90063-9

Busby, S., & Ebright, R. H. (1997). Transcription activation at class II CAP-dependent promoters. Molecular Microbiology, 23(5), 853–859. https://doi.org/10.1046/j.1365-2958.1997.2771641.x. DOI: https://doi.org/10.1046/j.1365-2958.1997.2771641.x

Busby, S., & Ebright, R. H. (1999). Transcription activation by catabolite activator protein (CAP). Journal of Molecular Biology, 293(2), 199–213. https://doi.org/10.1006/jmbi.1999.3161. DOI: https://doi.org/10.1006/jmbi.1999.3161

de Crombrugghe, B., Busby, S., & Buc, H. (1984). Cyclic AMP receptor protein: role in transcription activation. Science, 224(4651), 831–838. https://doi.org/10.1126/science.6372090. DOI: https://doi.org/10.1126/science.6372090

Ebright R. H. (1993). Transcription activation at Class I CAP-dependent promoters. Molecular Microbiology, 8(5), 797–802. https://doi.org/10.1111/j.1365-2958.1993.tb01626.x. DOI: https://doi.org/10.1111/j.1365-2958.1993.tb01626.x

Ebright, R. H., Ebright, Y. W., & Gunasekera, A. (1989). Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. Coli lac DNA site. Nucleic Acids Research, 17(24), 10295–10305. https://doi.org/10.1093/nar/17.24.10295. DOI: https://doi.org/10.1093/nar/17.24.10295

Garges, S., & Adhya, S. (1985). Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell, 41(3), 745–751. https://doi.org/10.1016/s0092-8674(85)80055-6. DOI: https://doi.org/10.1016/S0092-8674(85)80055-6

Georis. I. (2013). Catabolite gene activator protein. In S. Maloy, K. Hughes (Eds.), Brenner’s Encyclopedia of Genetics, 2nd Ed (pp. 442-446). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-374984-0.00202-3

Heyduk, T., & Lee, J. C. (1989). Escherichia coli cAMP receptor protein: evidence for three protein conformational states with different promoter binding affinities. Biochemistry, 28(17), 6914–6924. https://doi.org/10.1021/bi00443a021. DOI: https://doi.org/10.1021/bi00443a021

Heyduk, T., Lee, J. C., Ebright, Y. W., Blatter, E. E., Zhou, Y., & Ebright, R. H. (1993). CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature, 364(6437), 548–549. https://doi.org/10.1038/364548a0. DOI: https://doi.org/10.1038/364548a0

Igarashi, K., & Ishihama, A. (1991). Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell, 65(6), 1015–1022. https://doi.org/10.1016/0092-8674(91)90553-b. DOI: https://doi.org/10.1016/0092-8674(91)90553-B

Kolb, A., Busby, S., Buc, H., Garges, S., & Adhya, S. (1993a). Transcriptional regulation by cAMP and its receptor protein. Annual Review of Biochemistry, 62, 749–795. https://doi.org/10.1146/annurev.bi.62.070193.003533. DOI: https://doi.org/10.1146/annurev.bi.62.070193.003533

Kolb, A., Busby, S., Herbert, M., Kotlarz, D., & Buc, H. (1983). Comparison of the binding sites for the Escherichia coli cAMP receptor protein at the lactose and galactose promoters. The EMBO journal, 2(2), 217–222. DOI: https://doi.org/10.1002/j.1460-2075.1983.tb01408.x

Kolb, A., Igarashi, K., Ishihama, A., Lavigne, M., Buckle, M., & Buc, H. (1993b). E. coli RNA polymerase, deleted in the C-terminal part of its alpha-subunit, interacts differently with the cAMP-CRP complex at the lac P1 and at the galP1 promoter. Nucleic Acids Research, 21(2), 319–326. https://doi.org/10.1093/nar/21.2.319. DOI: https://doi.org/10.1093/nar/21.2.319

Law, E. C., Savery, N. J., & Busby, S. J. (1999). Interactions between the Escherichia coli cAMP receptor protein and the C-terminal domain of the alpha subunit of RNA polymerase at class I promoters. The Biochemical Journal, 337 ( Pt 3)(Pt 3), 415–423. DOI: https://doi.org/10.1042/bj3370415

Lawson, C. L., Swigon, D., Murakami, K. S., Darst, S. A., Berman, H. M., & Ebright, R. H. (2004). Catabolite activator protein: DNA binding and transcription activation. Current Opinion in Structural Biology, 14(1), 10–20. https://doi.org/10.1016/j.sbi.2004.01.012. DOI: https://doi.org/10.1016/j.sbi.2004.01.012

Malan, T. P., Kolb, A., Buc, H., & McClure, W. R. (1984). Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. Journal of Molecular Biology, 180(4), 881–909. https://doi.org/10.1016/0022-2836(84)90262-6. DOI: https://doi.org/10.1016/0022-2836(84)90262-6

McKay, D. B., & Steitz, T. A. (1981). Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature, 290(5809), 744–749. https://doi.org/10.1038/290744a0. DOI: https://doi.org/10.1038/290744a0

Mukhopadhyay, J., Sur, R., & Parrack, P. (1999). Functional roles of the two cyclic AMP-dependent forms of cyclic AMP receptor protein from Escherichia coli. FEBS letters, 453(1-2), 215–218. https://doi.org/10.1016/s0014-5793(99)00719-x. DOI: https://doi.org/10.1016/S0014-5793(99)00719-X

Murakami, K., Fujita, N., & Ishihama, A. (1996). Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. The EMBO journal, 15(16), 4358–4367. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb00809.x

Murakami, K., Owens, J. T., Belyaeva, T. A., Meares, C. F., Busby, S. J., & Ishihama, A. (1997). Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94(21), 11274–11278. https://doi.org/10.1073/pnas.94.21.11274. DOI: https://doi.org/10.1073/pnas.94.21.11274

Niu, W., Kim, Y., Tau, G., Heyduk, T., & Ebright, R. H. (1996). Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell, 87(6), 1123–1134. https://doi.org/10.1016/s0092-8674(00)81806-1. DOI: https://doi.org/10.1016/S0092-8674(00)81806-1

Niu, W., Zhou, Y., Dong, Q., Ebright, Y. W., & Ebright, R. H. (1994). Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). I. Saturation and alanine-scanning mutagenesis. Journal of Molecular Biology, 243(4), 595–602. https://doi.org/10.1016/0022-2836(94)90034-5. DOI: https://doi.org/10.1016/0022-2836(94)90034-5

Passner, J. M., & Steitz, T. A. (1997). The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 2843–2847. https://doi.org/10.1073/pnas.94.7.2843. DOI: https://doi.org/10.1073/pnas.94.7.2843

Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H., & Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 6927–6932. https://doi.org/10.1073/pnas.0900595106. DOI: https://doi.org/10.1073/pnas.0900595106

Rhodius, V. A., West, D. M., Webster, C. L., Busby, S. J., & Savery, N. J. (1997). Transcription activation at class II CRP-dependent promoters: the role of different activating regions. Nucleic acids research, 25(2), 326–332. https://doi.org/10.1093/nar/25.2.326. DOI: https://doi.org/10.1093/nar/25.2.326

Ryu, S., Kim, J., Adhya, S., & Garges, S. (1993). Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein. Proceedings of the National Academy of Sciences of the United States of America, 90(1), 75–79. https://doi.org/10.1073/pnas.90.1.75. DOI: https://doi.org/10.1073/pnas.90.1.75

Sagendorf, J. M., Markarian, N., Berman, H. M., & Rohs, R. (2020). DNAproDB: an expanded database and web-based tool for structural analysis of DNA-protein complexes. Nucleic Acids Research, 48(D1), D277–D287. https://doi.org/10.1093/nar/gkz889. DOI: https://doi.org/10.1093/nar/gkz889

Saha, A., Mukhopadhyay, J., Datta, A. B., & Parrack, P. (2015). Revisiting the mechanism of activation of cyclic AMP receptor protein (CRP) by cAMP in Escherichia coli: lessons from a subunit-crosslinked form of CRP. FEBS letters, 589(3), 358–363. https://doi.org/10.1016/j.febslet.2014.12.021. DOI: https://doi.org/10.1016/j.febslet.2014.12.021

Savery, N. J., Lloyd, G. S., Busby, S. J., Thomas, M. S., Ebright, R. H., & Gourse, R. L. (2002). Determinants of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit important for transcription at class I cyclic AMP receptor protein-dependent promoters. Journal of Bacteriology, 184(8), 2273–2280. https://doi.org/10.1128/JB.184.8.2273-2280.2002. DOI: https://doi.org/10.1128/JB.184.8.2273-2280.2002

Savery, N. J., Lloyd, G. S., Kainz, M., Gaal, T., et al. (1998). Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. The EMBO Journal, 17(12), 3439–3447. https://doi.org/10.1093/emboj/17.12.3439. DOI: https://doi.org/10.1093/emboj/17.12.3439

Sharma, H., Yu, S., Kong, J., Wang, J., & Steitz, T. A. (2009). Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 106(39), 16604–16609. https://doi.org/10.1073/pnas.0908380106. DOI: https://doi.org/10.1073/pnas.0908380106

Tutar Y. (2008). Syn, anti, and finally both conformations of cyclic AMP are involved in the CRP-dependent transcription initiation mechanism in E. coli lac operon. Cell Biochemistry and Function, 26(4), 399–405. https://doi.org/10.1002/cbf.1462. DOI: https://doi.org/10.1002/cbf.1462

Van Zundert, G., Rodrigues, J., Trellet, M., Schmitz, C., et al. (2016). The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/ j.jmb.2015.09.014. DOI: https://doi.org/10.1016/j.jmb.2015.09.014

West, D., Williams, R., Rhodius, V., Bell, A., et al. (1993). Interactions between the Escherichia coli cyclic AMP receptor protein and RNA polymerase at class II promoters. Molecular Microbiology, 10(4), 789–797. https://doi.org/10.1111/j.1365-2958.1993.tb00949.x. DOI: https://doi.org/10.1111/j.1365-2958.1993.tb00949.x

Williams, R. M., Rhodius, V. A., Bell, A. I., Kolb, A., & Busby, S. J. (1996). Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters. Nucleic Acids Research, 24(6), 1112–1118. https://doi.org/10.1093/nar/24.6.1112. DOI: https://doi.org/10.1093/nar/24.6.1112

Williams, R., Bell, A., Sims, G., & Busby, S. (1991). The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucleic Acids Research, 19(24), 6705–6712. https://doi.org/10.1093/nar/19.24.6705. DOI: https://doi.org/10.1093/nar/19.24.6705

Zhou, Y., Merkel, T. J., & Ebright, R. H. (1994a). Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). II. Role at Class I and class II CAP-dependent promoters. Journal of Molecular Biology, 243(4), 603–610. https://doi.org/10.1016/0022-2836(94)90035-3. DOI: https://doi.org/10.1016/0022-2836(94)90035-3

Zhou, Y., Pendergrast, P. S., Bell, A., Williams, R., Busby, S., & Ebright, R. H. (1994b). The functional subunit of a dimeric transcription activator protein depends on promoter architecture. The EMBO Journal, 13(19), 4549–4557. DOI: https://doi.org/10.1002/j.1460-2075.1994.tb06776.x

Zhou, Y., Zhang, X., & Ebright, R. H. (1993). Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proceedings of the National Academy of Sciences of the United States of America, 90(13), 6081–6085. https://doi.org/10.1073/pnas.90.13.6081. DOI: https://doi.org/10.1073/pnas.90.13.6081

Downloads

Published

2022-02-28

How to Cite

Chandra, S. ., Samanta, S. ., Mukhopadhyay, R. ., Majumder, R. ., & Saha, A. . (2022). A detailed investigation to study the pattern of the interplay of Cyclic AMP Receptor Protein (CRP) of E. coli with its different classes of promoters. Journal of Experimental Biology and Agricultural Sciences, 10(1), 266–277. https://doi.org/10.18006/2022.10(1).266.277

Issue

Section

PROCEEDING OF BIONEXT-2021_RESEARCH ARTICLES

Categories