Biosorption of Acid dye by Jackfruit Leaf Powder: Isotherm, kinetics and Response surface methodology studies

Authors

  • Swagata Roy Chowdhury Department of Biotechnology, School of Life Science & Biotechnology, ADAMAS University, Kolkata, India
  • Sebak Ranjan Roy Department of Food Science and Technology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal-741249, India
  • Aritra Ganguly Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Rounak Ghosh Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Suvajit Majumder Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Archita Dasgupta Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Ranjan Das Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Anupam Kumar Department of Food Technology, Hemnalini Memorial College of Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal -741246, India
  • Animesh Naskar Department of Food Science and Technology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal-741249, India
  • Rajib Majumder Department of Biotechnology, School of Life Science & Biotechnology, ADAMAS University, Kolkata, India

DOI:

https://doi.org/10.18006/2022.10(1).254.265

Keywords:

Biosorption, Acid dye, Jackfruit leaf, Response surface methodology, Kinetics

Abstract

A green adsorbent derived from Jackfruit leaf powder (JLP) was used to eliminate Acid Yellow 99 (AY 99) dye from an aqueous medium in this study. We checked the effect of pH, biomass dosage, and temperature (process parameters) on the adsorption potential of AY 99 was explored using the CCD model integrating the RSM approach. At a pH of 2.5, biosorbent dosage of 4 gL-1, and a 30°C temperature, maximum removal was preferred. ANOVA was incorporated to observe the importance of experimental variables and their interactions. The solution pH (A) and biomass dose (C) had the greatest effects on the decolorization of AY 99, according to the findings. ANOVA was used to identify the most important factors, which included two independent variables (A and C) and two quadratic model terms (A2 and C2). The kinetic data were effectively interpreted using a pseudo 2nd order with film diffusion model combination, indicating the chemisorptions phenomenon. Following the model of Langmuir isotherm, the utmost capacity for adsorption was determined to be 418.15 mg g-1 in terms of initial dye concentration. The findings of the maximum adsorption capacity showed that JLP could be employed as a useful adsorbent to eliminate AY 99 from its aqueous medium.

References

Bagheri, R., Ghaedi, M., Asfaram, A., Dil, E. A., & Javadian, H. (2019). RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalusscoparia: Kinetic and isotherm studies. Polyhedron, 171, 464-472. DOI: https://doi.org/10.1016/j.poly.2019.07.037

Basu, M., Guha, A. K., & Ray, L. (2017). Adsorption behavior of cadmium on husk of lentil. Process Safety and Environmental Protection, 106, 11-22. DOI: https://doi.org/10.1016/j.psep.2016.11.025

Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116. DOI: https://doi.org/10.1016/j.sciaf.2019.e00116

Das, M., & Mishra, C. (2019). Jackfruit leaf as an adsorbent of malachite green: recovery and reuse of the dye. SN Applied Sciences, 1 (5), 1-8. DOI: https://doi.org/10.1007/s42452-019-0459-7

De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., & de Luna, M. D. G. (2018). Adsorption of methylene blue dye and Cu (II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies. Sustainable Environment Research, 28(5), 197-205. DOI: https://doi.org/10.1016/j.serj.2018.04.001

Duque-Acevedo, M., Belmonte-Urena, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902. DOI: https://doi.org/10.1016/j.gecco.2020.e00902

Gupta, N. K., Gupta, A., Ramteke, P., Sahoo, H., & Sengupta, A. (2019). Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. Journal of Molecular Liquids, 274, 148-164. DOI: https://doi.org/10.1016/j.molliq.2018.10.134

Khan, M. M. R., Ray, M., & Guha, A. K. (2011). Mechanistic studies on the binding of Acid Yellow 99 on coir pith. Bioresource Technology, 102(3), 2394-2399. DOI: https://doi.org/10.1016/j.biortech.2010.10.107

Khan, M., Motiar, R., Sahoo, B., Mukherjee, A. K., & Naskar, A. (2019). Biosorption of acid yellow-99 using mango (Mangiferaindica) leaf powder, an economic agricultural waste. SN Applied Sciences, 1(11), 1-15. DOI: https://doi.org/10.1007/s42452-019-1537-6

Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3 (2), 275-290. DOI: https://doi.org/10.1016/j.biori.2019.09.001

Majumder, R., Sheikh, L., Naskar, A., Mukherjee, M., &Tripathy, S. (2017). Depletion of Cr (VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: a mechanistic approach. Scientific Reports, 7(1), 1-15. DOI: https://doi.org/10.1038/s41598-017-10160-0

Naskar, A., & Bera, D. (2018). Mechanistic exploration of Ni (II) removal by immobilized bacterial biomass and interactive influence of coexisting surfactants. Environmental Progress & Sustainable Energy, 37(1), 342-354. DOI: https://doi.org/10.1002/ep.12685

Naskar, A., & Majumder, R. (2017). Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. Journal of Molecular Liquids, 242, 892-899. DOI: https://doi.org/10.1016/j.molliq.2017.05.155

Naskar, A., Guha, A. K., Mukherjee, M., & Ray, L. (2016). Adsorption of nickel onto Bacillus cereus M116: a mechanistic approach. Separation Science and Technology, 51(3), 427-438. DOI: https://doi.org/10.1080/01496395.2015.1115069

Naskar, A., Majumder, R., & Goswami, M. (2020). Bioaccumulation of Ni (II) on growing cells of Bacillus sp.: response surface modeling and mechanistic insight. Environmental Technology & Innovation, 20, 101057. DOI: https://doi.org/10.1016/j.eti.2020.101057

Ojha, A. K., & Bulasara, V. K. (2015). Adsorption characteristics of jackfruit leaf powder for the removal of Amido black 10B dye. Environmental Progress & Sustainable Energy, 34(2), 461-470. DOI: https://doi.org/10.1002/ep.12015

Ozcan, A. S., & Ozcan, A. (2008). Adsorption of Acid Yellow 99 onto DEDMA-sepiolite from aqueous solutions. International Journal of Environment and Pollution, 34(1-4), 308-324. DOI: https://doi.org/10.1504/IJEP.2008.020800

Priyantha, N., Lim, L. B., Tennakoon, D. T. B., Liaw, E. T., Hei, C., & Liyandeniya, A. B. (2018). Biosorption of cationic dyes on breadfruit (Artocarpus altilis) peel and core. Applied Water Science, 8(1), 1-11. DOI: https://doi.org/10.1007/s13201-018-0648-3

Putri, K. N. A., Kaewpichai, S., Keereerak, A., & Chinpa, W. (2021). Facile Green Preparation of Lignocellulosic Biosorbent from Lemongrass Leaf for Cationic Dye Adsorption. Journal of Polymers and the Environment, 29(6), 1681-1693. DOI: https://doi.org/10.1007/s10924-020-02001-5

Ranasinghe, S. H., Navaratne, A. N., & Priyantha, N. (2018). Enhancement of adsorption characteristics of Cr (III) and Ni (II) by surface modification of jackfruit peel biosorbent. Journal of Environmental Chemical Engineering, 6(5), 5670-5682. DOI: https://doi.org/10.1016/j.jece.2018.08.058

Saha, P. D., Chakraborty, S., & Chowdhury, S. (2012). Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpusheterophyllus (jackfruit) leaf powder. Colloids and Surfaces B: Biointerfaces, 92, 262-270. DOI: https://doi.org/10.1016/j.colsurfb.2011.11.057

Saxena, M., Sharma, N., & Saxena, R. (2020). Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multi-walled carbon nanotubes. Surfaces and Interfaces, 21, 100639. DOI: https://doi.org/10.1016/j.surfin.2020.100639

Uddin, M. T., Rukanuzzaman, M., Khan, M. M. R., & Islam, M. A. (2009). Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpusheteropyllus) leaf powder: a fixed-bed column study. Journal of Environmental Management, 90(11), 3443-3450. DOI: https://doi.org/10.1016/j.jenvman.2009.05.030

Wang, Y., Wei, H., Wang, Y., Peng, C., & Dai, J. (2021). Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alexandria Engineering Journal, 60(6), 5803-5812. DOI: https://doi.org/10.1016/j.aej.2021.04.015

Downloads

Published

2022-02-28

How to Cite

Chowdhury, S. R. ., Roy, S. R. ., Ganguly, A. ., Ghosh, R. ., Majumder, S. ., Dasgupta, A. ., Das, R. ., Kumar, A. ., Naskar, A. ., & Majumder, R. . (2022). Biosorption of Acid dye by Jackfruit Leaf Powder: Isotherm, kinetics and Response surface methodology studies. Journal of Experimental Biology and Agricultural Sciences, 10(1), 254–265. https://doi.org/10.18006/2022.10(1).254.265

Issue

Section

PROCEEDING OF BIONEXT-2021_RESEARCH ARTICLES

Categories