Leishmaniasis: Plants as a source of antileishmanial agents

Authors

  • Manoj Kumar Singh Department of Biotechnology, Adamas University, Barasat-Barrackpore road, Barbaria, P.O Jagannathpur District- 24 Parganas (North), Kolkata-700126, West Bengal, India
  • Arpita Das Department of Biotechnology, Adamas University, Barasat-Barrackpore road, Barbaria, P.O Jagannathpur District- 24 Parganas (North), Kolkata-700126, West Bengal, India
  • Rudra P Saha Department of Biotechnology, Adamas University, Barasat-Barrackpore road, Barbaria, P.O Jagannathpur District- 24 Parganas (North), Kolkata-700126, West Bengal, India
  • Joydeep Paul Department of Biotechnology, Adamas University, Barasat-Barrackpore road, Barbaria, P.O Jagannathpur District- 24 Parganas (North), Kolkata-700126, West Bengal, India
  • Debkumar Nandi TCG Life sciences Private Limited, Chembiotek, Salt Lake Electronics Complex, BN Block, Sector V, Kolkata, West Bengal 700091

DOI:

https://doi.org/10.18006/2022.10(1).227.247

Keywords:

Antileishmanial drugs, Cutaneous Leishmaniasis, Kala-azar, Leishmania, Plant derived antileishmanial compounds, Sandfly, Visceral Leishmaniasis

Abstract

Leishmania infection causes a group of tropical diseases and has remained neglected for decades. It spreads by sandfly vector and is one of the most fatal protozoan diseases after malaria. Leishmaniases are a group of diseases caused by the infection of different Leishmania species and display clinically different forms like “Visceral leishmaniasis” (VL), “mucocutaneous leishmaniasis” and “cutaneous leishmaniasis” (CL). Approximately one billion people living in an endemic area are at high risk. Three hundred thousand cases of VL are reported annually and around twenty thousand people die every year, proving it as one of the most lethal forms of leishmaniasis. Until now, no effective vaccine could be made. There is an increase in drug resistance in the case of conventional drugs. New synthetic drugs are either too costly or have side effects. Requirements of new drugs are of utmost importance to control this situation. Plants provide a source of unlimited chemical diversity, which can be screened for antileishmanial activities. Moreover, their low cost and less or no side effects make them idle candidates in the search of new antileishmanial drugs.

References

Akarid, K., Arnoult, D., Micic-Polianski, J., Sif, J., et al. (2004). Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c. Journal of Leukocyte Biology, 76(1), 95–103. DOI: https://doi.org/10.1189/jlb.1001877

Ali, R., Tabrez, S., Rahman, F., et al. (2021). Antileishmanial Evaluation of Bark Methanolic Extract of Acacia nilotica: In Vitro and In Silico Studies. ACS Omega, 6(12), 8548–8560 DOI: https://doi.org/10.1021/acsomega.1c00366

Al-Sokari, S. S., Ali, N. A., Monzote, L., & Al-Fatimi, M. A. (2015). Evaluation of Antileishmanial Activity of Albaha Medicinal Plants against Leishmania amazonensis. BioMed Research International, 2015, 938747 DOI: https://doi.org/10.1155/2015/938747

Alvar, J., Aparicio, P., Aseffa, A., et al. (2008). The relationship between leishmaniasis and AIDS: the second 10 years. Clinical Microbiology Reviews, 21(2), 334–359. DOI: https://doi.org/10.1128/CMR.00061-07

Barata, L. E., Santos, L. S., Ferri, H.P., et al. (2000). Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochemistry, 55(6), 589–595 DOI: https://doi.org/10.1016/S0031-9422(00)00240-5

Berger, I., Passreiter, C. M., Cáceres, A., & Kubelka, W. (2001). Antiprotozoal activity of Neurolaena lobata. Phytotherapy Research : PTR, 15(4), 327–330 DOI: https://doi.org/10.1002/ptr.782

Berman J. D. (1997). Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clinical Infectious Diseases, 24(4), 684–703. DOI: https://doi.org/10.1093/clind/24.4.684

Bhakuni D.S., Goel A.K., Jain S., et al. (1988) Screening of Indian plants for biological activity. Part XIII. Indian Journal of Experimental Biology, 26, 883–904

Bhaumik, S. K., Paul, J., Naskar, K., Karmakar, S., & De, T. (2012). Asiaticoside induces tumour-necrosis-factor-α-mediated nitric oxide production to cure experimental visceral leishmaniasis caused by antimony-susceptible and -resistant Leishmania donovani strains. The Journal of Antimicrobial Chemotherapy, 67(4), 910–920. DOI: https://doi.org/10.1093/jac/dkr575

Blackwell, J. M.,&Ulczak, O. M. (1984). Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: demonstration and characterization of suppressor T cells in noncure mice. Infection and immunity, 44(1), 97–102. DOI: https://doi.org/10.1128/iai.44.1.97-102.1984

Blanchette, J., Racette, N., Faure, R., Siminovitch, K. A., & Olivier, M. (1999). Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. European Journal of Immunology, 29(11), 3737–3744. DOI: https://doi.org/10.1002/(SICI)1521-4141(199911)29:11<3737::AID-IMMU3737>3.0.CO;2-S

Bosquiroli, L., Dos Santos Ferreira, A. C., Farias, K. S., et al. (2017). In Vitro antileishmania activity of sesquiterpene-rich essential oils from Nectandra species. Pharmaceutical Biology, 55(1), 2285–2291 DOI: https://doi.org/10.1080/13880209.2017.1407803

Brajtburg, J., & Bolard, J. (1996). Carrier effects on biological activity of amphotericin B. Clinical Microbiology Reviews, 9(4), 512–531. DOI: https://doi.org/10.1128/CMR.9.4.512

Brígido H.P.C., Barbosa J.C., da Silva J.V., et al. (2020). Antileishmanial activity of Annona species (Annonaceae). SN Applied Sciences. 2. 10.1007/s42452-020-03340-7. DOI: https://doi.org/10.1007/s42452-020-03340-7

Bryceson A. (2001). A policy for leishmaniasis with respect to the prevention and control of drug resistance. Tropical Medicine & International health, 6(11), 928–934. DOI: https://doi.org/10.1046/j.1365-3156.2001.00795.x

Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. Lancet (London, England), 392(10151), 951–970 DOI: https://doi.org/10.1016/S0140-6736(18)31204-2

Cardona, G.W., Robledo, S., Alzate, F., et al. (2020). Antileishmanial and cytotoxic activities of four Andean plant extracts from Colombia. Veterinary World, 13(10), 2178–2182 DOI: https://doi.org/10.14202/vetworld.2020.2178-2182

Castillo, D., Arevalo, J., Herrera, F., et al. (2007). Spirolactone iridoids might be responsible for the antileishmanial activity of a Peruvian traditional remedy made with Himatanthus sucuuba (Apocynaceae). Journal of Ethnopharmacology, 112(2), 410–414 DOI: https://doi.org/10.1016/j.jep.2007.03.025

Cavalcanti da Silva, E., Dias Rayol, C., Medeiros, et al. (2012). Antileishmanial activity of warifteine: a bisbenzylisoquinoline alkaloid isolated from Cissampelos sympodialis Eichl.(Menispermaceae). The Scientific World Journal, 2012, 516408 DOI: https://doi.org/10.1100/2012/516408

Chan-Bacab, M. J., & Peña-Rodríguez, L. M. (2001). Plant natural products with leishmanicidal activity. Natural Product Reports, 18(6), 674–688. DOI: https://doi.org/10.1039/b100455g

Chappuis, F., Sundar, S., Hailu, A., et al. (2007). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?. Nature Reviews. Microbiology, 5(11), 873–882. DOI: https://doi.org/10.1038/nrmicro1748

Chen, M., Christensen, S. B., Blom, J., et al. (1993). Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrobial Agents and Chemotherapy, 37(12), 2550–2556. DOI: https://doi.org/10.1128/AAC.37.12.2550

Chen, M., Christensen, S. B., Theander, T. G., & Kharazmi, A. (1994). Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrobial Agents and Chemotherapy, 38(6), 1339–1344. DOI: https://doi.org/10.1128/AAC.38.6.1339

Chen, M., Zhai, L., Christensen, S. B., Theander, T. G., & Kharazmi, A. (2001). Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrobial Agents and Chemotherapy, 45(7), 2023–2029 DOI: https://doi.org/10.1128/AAC.45.7.2023-2029.2001

Chouhan, G., Islamuddin, M., Want, M. Y., et al. (2015). Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunostimulatory potential and therapeutic cure in vivo. Parasites and Vectors, 8, 183 DOI: https://doi.org/10.1186/s13071-015-0788-3

Chunge, C. N., Owate, J., Pamba, H. O., & Donno, L. (1990). Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Transactions of the Royal Society of Tropical Medicine and Hygiene, 84(2), 221–225. DOI: https://doi.org/10.1016/0035-9203(90)90263-E

Coimbra, E. S., Antinarelli, L. M., Silva, et al. (2016). Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chemico-biological Interactions, 260, 50–57. DOI: https://doi.org/10.1016/j.cbi.2016.10.017

Conceição-Silva, F., & Morgado, F. N. (2019). Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End?. Frontiers in Cellular and Infection Microbiology, 9, 330 DOI: https://doi.org/10.3389/fcimb.2019.00330

Cortázar, T. M., Coombs, G. H., & Walker, J. (2007). Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Experimental Parasitology, 116(4), 475–482 DOI: https://doi.org/10.1016/j.exppara.2007.02.018

Croft, S. L., & Hogg, J. (1988). Limited activity of bacterial DNA topoisomerase II inhibitors against Leishmania donovani and Trypanosoma cruzi amastigotes in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene, 82(6), 856. DOI: https://doi.org/10.1016/0035-9203(88)90017-X

Croft, S. L., Seifert, K., & Yardley, V. (2006). Current scenario of drug development for leishmaniasis. The Indian Journal of Medical Research, 123(3), 399–410.

Cruz, I., Nieto, J., Moreno, J., et al. (2006). Leishmania/HIV co-infections in the second decade. The Indian Journal of Medical Research, 123(3), 357–388.

da Costa-Silva, T. A., Conserva, G., Galisteo, A. J., Jr, Tempone, A. G., & Lago, J. (2019). Antileishmanial activity and immunomodulatory effect of seco subamolide, a butanolide isolated from Nectandra oppositifolia (Lauraceae). The journal of Venomous Animals and Toxins Including Tropical Diseases, 25, e20190008 DOI: https://doi.org/10.1590/1678-9199-jvatitd-2019-0008

da Silva, E. R., Maquiaveli, C., & Magalhães, P. P. (2012). The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Experimental Parasitology, 130(3), 183–188 DOI: https://doi.org/10.1016/j.exppara.2012.01.015

Da Silva, L. G., Gomes, K. S., Costa-Silva, T. A., et al. (2021). Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Natural Product Research, 35(23), 5373–5377 DOI: https://doi.org/10.1080/14786419.2020.1765347

Das VN, Pandey K, Verma N, et al. (2019). Short report: Development of post-kala-azar dermal leishmaniasis (PKDL) in miltefosine-treated visceral leishmaniasis. American Journal of Tropical Medicine and Hygiene, 80(3):336-8. DOI: https://doi.org/10.4269/ajtmh.2009.80.336

de la Loma, A., Alvar, J., Martinez Galiano, E., et al. (1985). Leishmaniasis or AIDS?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 79(3), 421–422. DOI: https://doi.org/10.1016/0035-9203(85)90400-6

Delorenzi, J. C., Attias, M., Gattass, C. R., et al. (2001). Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrobial Agents and Chemotherapy, 45(5), 1349–1354 DOI: https://doi.org/10.1128/AAC.45.5.1349-1354.2001

Desjeux P, & Alvar J. (2003). Leishmania/HIV co-infections: epidemiology in Europe. Annals of Tropical Medicine & Parasitology, 97 (Suppl 1), 3-15. DOI: https://doi.org/10.1179/000349803225002499

Di Giorgio, C., Delmas, F., Akhmedjanova, V., et al. (2005). In vitro antileishmanial activity of diphyllin isolated from Haplophyllumbucharicum. Planta Medica, 71(4), 366–369 DOI: https://doi.org/10.1055/s-2005-864106

do Socorro S Rosa, Mendonça-Filho, M., R. R., Bizzo, et al. (2003). Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrobial Agents and Chemotherapy, 47(6), 1895–1901. DOI: https://doi.org/10.1128/AAC.47.6.1895-1901.2003

Donovan, M. J., Maciuba, B. Z., Mahan, C. E., & McDowell, M. A. (2009). Leishmania infection inhibits cycloheximide-induced macrophage apoptosis in a strain-dependent manner. Experimental Parasitology, 123(1), 58–64. DOI: https://doi.org/10.1016/j.exppara.2009.05.012

Dos Reis, M. B., Manjolin, L. C., Maquiaveli, C., Santos-Filho, O. A., & da Silva, E. R. (2013a). Inhibition of Leishmania (Leishmania) amazonensis and rat arginases by green tea EGCG, (+)-catechin and (-)-epicatechin: a comparative structural analysis of enzyme-inhibitor interactions. PloS one, 8(11), e78387 DOI: https://doi.org/10.1371/journal.pone.0078387

Dos Santos Vasconcelos, C. R., de Lima Campos, T., & Rezende, A. M. (2018). Building protein-protein interaction networks for Leishmania species through protein structural information. BMC bioinformatics, 19(1), 85. DOI: https://doi.org/10.1186/s12859-018-2105-6

Dos Santos, V. A., Leite, K. M., da Costa Siqueira, M., et al. (2013b). Antiprotozoal activity of quinonemethide triterpenes from Maytenusilicifolia (Celastraceae). Molecules (Basel, Switzerland), 18(1), 1053–1062 DOI: https://doi.org/10.3390/molecules18011053

Dutta, A., Ghoshal, A., Mandal, D., et al. (2007). Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. Journal of medical microbiology, 56(Pt 9), 1196–1204. DOI: https://doi.org/10.1099/jmm.0.47114-0

Flórez, A. F., Park, D., Bhak, J., et al. (2010). Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics, 11, 484. DOI: https://doi.org/10.1186/1471-2105-11-484

Fonseca-Silva, F., Inacio, J. D., Canto-Cavalheiro, M. M., & Almeida-Amaral, E. E. (2011). Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PloS one, 6(2), e14666 DOI: https://doi.org/10.1371/journal.pone.0014666

Fonseca-Silva, F., Inacio, J. D., Canto-Cavalheiro, M. M., et al. (2016). Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action. PLoS Neglected Tropical Diseases, 10(2), e0004442. DOI: https://doi.org/10.1371/journal.pntd.0004442

Fournet, A., Angelo, A., Muñoz, V., Roblot, F., Hocquemiller, R., et al. (1992). Biological and chemical studies of Perabenensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. Journal of Ethnopharmacology, 37(2), 159–164. DOI: https://doi.org/10.1016/0378-8741(92)90074-2

Fournet, A., Barrios, A. A., & Muñoz, V. (1994a). Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. Journal of Ethnopharmacology, 41(1-2), 19–37 DOI: https://doi.org/10.1016/0378-8741(94)90054-X

Fournet, A., Barrios, A. A., Muñoz, V., Hocquemiller, R., Roblot, F., et al. (1994b). Antileishmanial activity of a tetralone isolated from Ampeloceraedentula, a Bolivian plant used as a treatment for cutaneous leishmaniasis. Planta Medica, 60(1), 8–12 DOI: https://doi.org/10.1055/s-2006-959397

Fournet, A., Gantier, J. C., Gautheret, A., et al. (1994c). The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. The Journal of Antimicrobial Chemotherapy, 33(3), 537–544. DOI: https://doi.org/10.1093/jac/33.3.537

Fragaki, K., Suffia, I., Ferrua, B., et al. (2001). Immunisation with DNA encoding Leishmania infantum protein papLe22 decreases the frequency of parasitemic episodes in infected hamsters. Vaccine, 19(13-14), 1701–1709. DOI: https://doi.org/10.1016/S0264-410X(00)00398-4

Fuchino, H., Kawano, M., Mori-Yasumoto, K., et al. (2010). In vitro leishmanicidal activity of benzophenanthridine alkaloids from Bocconiapearcei and related compounds. Chemical & Pharmaceutical Bulletin, 58(8), 1047–1050 DOI: https://doi.org/10.1248/cpb.58.1047

Ganguly, S., Das, N. K., Barbhuiya, J. N., & Chatterjee, M. (2010). Post-kala-azar dermal leishmaniasis--an overview. International Journal of Dermatology, 49(8), 921–931. DOI: https://doi.org/10.1111/j.1365-4632.2010.04558.x

Garcia, A. R., Amaral, A., Azevedo, M., et al. (2017). Cytotoxicity and anti-Leishmania amazonensis activity of Citrus sinensis leaf extracts. Pharmaceutical Biology, 55(1), 1780–1786 DOI: https://doi.org/10.1080/13880209.2017.1325380

Gedda, M. R., Singh, B., Kumar, D., et al. (2020). Post kala-azar dermal leishmaniasis: A threat to elimination program. PLoS Neglected Tropical Diseases, 14(7), e0008221 DOI: https://doi.org/10.1371/journal.pntd.0008221

Germonprez, N., Maes, L., Van Puyvelde, L., et al. (2005). In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesabalansae and some chemical derivatives. Journal of Medicinal Chemistry, 48(1), 32–37. DOI: https://doi.org/10.1021/jm031150y

Geroldinger, G., Tonner, M., Quirgst, J., et al. (2020). Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochemical Pharmacology, 173, 113737 DOI: https://doi.org/10.1016/j.bcp.2019.113737

Ghorbani, M., & Farhoudi, R. (2017). Leishmaniasis in humans: drug or vaccine therapy? Drug Design, Development and Therapy, 12, 25–40 DOI: https://doi.org/10.2147/DDDT.S146521

Githinji, E. K., Irungu, L. W., Tonui, W. K., et al. (2010). In vitro effects of Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens on Leishmania major promastigotes. African Journal of Traditional, Complementary, and Alternative Medicines, 7(3), 264–275 DOI: https://doi.org/10.4314/ajtcam.v7i3.54791

González-Coloma, A., Reina, M., Sáenz, C., et al. (2012). Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitology research, 110(4), 1381–1392 DOI: https://doi.org/10.1007/s00436-011-2638-3

Gradoni L. (2001). An update on antileishmanial vaccine candidates and prospects for a canine Leishmania vaccine. Veterinary Parasitology, 100(1-2), 87–103. DOI: https://doi.org/10.1016/S0304-4017(01)00486-1

Gramiccia, M., & Gradoni, L. (2005). The current status of zoonotic leishmaniases and approaches to disease control. International Journal for Parasitology, 35(11-12), 1169–1180. DOI: https://doi.org/10.1016/j.ijpara.2005.07.001

Guerin, P. J., Olliaro, P., Sundar, S., et al. (2002). Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. The Lancet Infectious diseases, 2(8), 494–501. DOI: https://doi.org/10.1016/S1473-3099(02)00347-X

Handman, E., Button, L. L., & McMaster, R. W. (1990). Leishmania major: production of recombinant gp63, its antigenicity and immunogenicity in mice. Experimental Parasitology, 70(4), 427–435. DOI: https://doi.org/10.1016/0014-4894(90)90127-X

Hazra, S., Ghosh, S., Das Sarma, et al. (2013). Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani. Experimental Parasitology, 135(2), 407–413. DOI: https://doi.org/10.1016/j.exppara.2013.07.021

Hefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, 33(3), 162–174. DOI: https://doi.org/10.1016/j.pt.2016.11.003

Hefnawy, A., Cantizani, J., Peña, I., et al. (2018). Importance of secondary screening with clinical isolates for anti-leishmania drug discovery. Scientific Reports, 8(1), 11765. DOI: https://doi.org/10.1038/s41598-018-30040-5

Herwaldt B. L. (1999). Leishmaniasis. Lancet (London, England), 354(9185), 1191–1199. DOI: https://doi.org/10.1016/S0140-6736(98)10178-2

Hooshyar, H., Talari, S., & Feyzi, F. (2014). Therapeutic Effect of Hedera helix Alcoholic Extract Against Cutaneous Leishmaniasis Caused by Leishmania major in Balb/c Mice. Jundishapur Journal of Microbiology, 7(4), e9432 DOI: https://doi.org/10.5812/jjm.9432

Iwu, M. M., Jackson, J. E., Tally, J. D., & Klayman, D. L. (1992). Evaluation of plant extracts for antileishmanial activity using a mechanism-based radiorespirometricmicrotechnique (RAM). Planta Medica, 58(5), 436–441 DOI: https://doi.org/10.1055/s-2006-961508

Julia, V., Rassoulzadegan, M., & Glaichenhaus, N. (1996). Resistance to Leishmania major induced by tolerance to a single antigen. Science (New York, N.Y.), 274(5286), 421–423. DOI: https://doi.org/10.1126/science.274.5286.421

Kam, T. S., Sim, K. M., Koyano, T., et al. (1998). Cytotoxic and leishmanicidal aminoglyco steroids and aminosteroids from Holarrhenacurtisii. Journal of Natural Products, 61(11), 1332–1336 DOI: https://doi.org/10.1021/np970545f

Khademvatan, S., Eskandari, K., Hazrati-Tappeh, et al. (2019). In silico and in vitro comparative activity of green tea components against Leishmania infantum. Journal of Global Antimicrobial Resistance, 18, 187–194. DOI: https://doi.org/10.1016/j.jgar.2019.02.008

Lahiry, S., Das, A. K., Das, S. N., & Manna, M. (2018). Ethanolic leaf extract of Coccinia grandis is effective against both drug resistant and drug sensitive clinical isolates of Indian Kala-azar. Journal of Parasitic Diseases, 42(3), 433–441 DOI: https://doi.org/10.1007/s12639-018-1021-z

Lamidi, M., DiGiorgio, C., Delmas, et al. (2005). In vitro cytotoxic, antileishmanial and antifungal activities of ethnopharmacologically selected Gabonese plants. Journal of Ethnopharmacology, 102(2), 185–190 DOI: https://doi.org/10.1016/j.jep.2005.06.011

Lezama-Dávila, C. M., Pan, L., Isaac-Márquez, et al. (2014). Pentalinonandrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytotherapy research, 28(6), 909–916 DOI: https://doi.org/10.1002/ptr.5079

Lima, G. S., Castro-Pinto, D. B., Machado, G. C., Maciel, M. A.,& Echevarria, A. (2015). Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 22(12), 1133–1137 DOI: https://doi.org/10.1016/j.phymed.2015.08.012

Lodge, R., & Descoteaux, A. (2006). Phagocytosis of Leishmania donovani amastigotes is Rac1 dependent and occurs in the absence of NADPH oxidase activation. European Journal of Immunology, 36(10), 2735–2744. DOI: https://doi.org/10.1002/eji.200636089

Macahig, R. A., Matsunami, K., & Otsuka, H. (2011). Chemical studies on an endemic Philippine plant: sulfated glucoside and seco-A-ring triterpenoids from Dillenia philippinensis. Chemical & Pharmaceutical Bulletin, 59(3), 397–401 DOI: https://doi.org/10.1248/cpb.59.397

Maes, L., Germonprez, N., Quirijnen, L., et al. (2004). Comparative activities of the triterpene saponin maesabalide III and liposomal amphotericin B (AmBisome) against Leishmania donovani in hamsters. Antimicrobial Agents and Chemotherapy, 48(6), 2056–2060 DOI: https://doi.org/10.1128/AAC.48.6.2056-2060.2004

Mahmoudvand, H., Sepahvand, P., Jahanbakhsh, S., & Azadpour, M. (2016). Evaluation of the antileishmanial and cytotoxic effects of various extracts of garlic (Allium sativum) on Leishmania tropica. Journal of Parasitic Diseases, 40(2), 423–426 DOI: https://doi.org/10.1007/s12639-014-0520-9

Medda, S., Mukhopadhyay, S., & Basu, M. K. (1999). Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. The Journal of Antimicrobial Chemotherapy, 44(6), 791–794 DOI: https://doi.org/10.1093/jac/44.6.791

Mishra, P. K., Singh, N., Ahmad, G., Dube, A., & Maurya, R. (2005). Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorganic & Medicinal Chemistry Letters, 15(20), 4543–4546 DOI: https://doi.org/10.1016/j.bmcl.2005.07.020

Misra, A., Dube, A., Srivastava, B., Sharma, P., Srivastava, et al. (2001). Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine, 19(25-26), 3485–3492. DOI: https://doi.org/10.1016/S0264-410X(01)00058-5

Mittra, B., Saha, A., & Chowdhury, A. R. et al. (2000). Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Molecular medicine, 6(6), 527–541. DOI: https://doi.org/10.1007/BF03401792

Mohebali, M., Khamesipour, A., Mobedi, I., Zarei, Z., & Hashemi-Fesharki, R. (2004). Double-blind randomized efficacy field trial of alum precipitated autoclaved Leishmania major vaccine mixed with BCG against canine visceral leishmaniasis in Meshkin-Shahr district, I.R. Iran. Vaccine, 22(29-30), 4097–4100. DOI: https://doi.org/10.1016/j.vaccine.2004.03.058

Mol, M., Kosey, D., & Singh, S. (2015). Nano-Synthetic Devices in Leishmaniasis: A Bioinformatics Approach. Frontiers in Immunology, 6, 323. DOI: https://doi.org/10.3389/fimmu.2015.00323

Montgomery, J., Ilg, T., Thompson, J. K., Kobe, B., & Handman, E. (2000). Identification and predicted structure of a leucine-rich repeat motif shared by Leishmania major proteophosphogly can and Parasite Surface Antigen 2. Molecular and Biochemical Parasitology, 107(2), 289–295. DOI: https://doi.org/10.1016/S0166-6851(00)00186-9

Monzote, L., García, M., Montalvo, A. M., Scull, R., & Miranda, M. (2010). Chemistry, cytotoxicity and antileishmanial activity of the essential oil from Piper auritum. Memorias do Instituto Oswaldo Cruz, 105(2), 168–173 DOI: https://doi.org/10.1590/S0074-02762010000200010

Monzote, L., Jiménez, J., Cuesta-Rubio, O., et al. (2016). In Vitro Assessment of Plants Growing in Cuba Belonging to Solanaceae Family Against Leishmania amazonensis. Phytotherapy research, 30(11), 1785–1793 DOI: https://doi.org/10.1002/ptr.5681

Moore, K. J., & Matlashewski, G. (1994). Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. Journal of Immunology, 152(6), 2930–2937.

Morais, L. S., Dusi, R. G., Demarque, D. P., et al. (2020). Antileishmanial compounds from Connarussuberosus: Metabolomics, isolation and mechanism of action. PloS one, 15(11), e0241855 DOI: https://doi.org/10.1371/journal.pone.0241855

Muñoz, V., Moretti, C., Sauvain, M., et al. (1994). Isolation of bis-indole alkaloids with antileishmanial and antibacterial activities from Peschiera van heurkii (syn. Tabernaemontana van heurkii). Planta Medica, 60(5), 455–459 DOI: https://doi.org/10.1055/s-2006-959531

Nandan, D., & Reiner, N. E. (1995). Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infection and Immunity, 63(11), 4495–4500. DOI: https://doi.org/10.1128/iai.63.11.4495-4500.1995

Oliveira, I., MoragasTellis, C. J., Chagas, M., et al. (2018). Carapa guianensis Aublet (Andiroba) Seed Oil: Chemical Composition and Antileishmanial Activity of Limonoid-Rich Fractions. BioMed Research International, 2018, 5032816 DOI: https://doi.org/10.1155/2018/5032816

Olobo, J. O., Anjili, C. O., Gicheru, M. M., et al. (1995). Vaccination of vervet monkeys against cutaneous leishmaniosis using recombinant Leishmania 'major surface glycoprotein' (gp63). Veterinary Parasitology, 60(3-4), 199–212. DOI: https://doi.org/10.1016/0304-4017(95)00788-6

Ortalli, M., Ilari, A., Colotti, G., et al. (2018). Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. European Journal of Medicinal Chemistry, 152, 527–541. DOI: https://doi.org/10.1016/j.ejmech.2018.04.057

Ouellette, M., Drummelsmith, J., & Papadopoulou, B. (2004). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resistance Updates, 7(4-5), 257–266. DOI: https://doi.org/10.1016/j.drup.2004.07.002

Panda, S. K., & Luyten, W. (2018). Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Activitéantiparasitaire chez les Asteraceae avec une attention particulière pour l’utilisationethnobotanique par les tribusd’OdishaenInde. Parasite (Paris, France), 25, 10 DOI: https://doi.org/10.1051/parasite/2018008

Pawar, H., Kulkarni, A., Dixit, T., Chaphekar, D., & Patole, M. S. (2014). A bioinformatics approach to reanalyze the genome annotation of kinetoplastid protozoan parasite Leishmania donovani. Genomics, 104(6 Pt B), 554–561. DOI: https://doi.org/10.1016/j.ygeno.2014.09.008

Peixoto, J. A., Andrade E Silva, M. L., Crotti, A. E., et al. (2011). Antileishmanial activity of the hydroalcoholic extract of Miconia langsdorffii, isolated compounds, and semi-synthetic derivatives. Molecules, 16(2), 1825–1833. DOI: https://doi.org/10.3390/molecules16021825

Peraza-Sánchez, S. R., Cen-Pacheco, F., Noh-Chimal, A., et al. (2007). Leishmanicidal evaluation of extracts from native plants of the Yucatan peninsula. Fitoterapia, 78(4), 315–318 DOI: https://doi.org/10.1016/j.fitote.2007.03.013

Pérez-Victoria, F. J., Castanys, S., & Gamarro, F. (2003). Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrobial Agents and Chemotherapy, 47(8), 2397–2403. DOI: https://doi.org/10.1128/AAC.47.8.2397-2403.2003

Pham, N. K., Mouriz, J., & Kima, P. E. (2005). Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation. Infection and Immunity, 73(12), 8322–8333. DOI: https://doi.org/10.1128/IAI.73.12.8322-8333.2005

Polonio, T., & Efferth, T. (2008). Leishmaniasis: drug resistance and natural products (review). International Journal of Molecular Medicine, 22(3), 277–286.

Pramanik, P. K., Paik, D., Pramanik, A., & Chakraborti, T. (2019). White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitology International, 71, 41–45 DOI: https://doi.org/10.1016/j.parint.2019.03.012

Rachamim, N., & Jaffe, C. L. (1993). Pure protein from Leishmania donovani protects mice against both cutaneous and visceral leishmaniasis. Journal of Immunology, 150(6), 2322–2331.

Rafati, S., Kariminia, A., Seyde-Eslami, S., Narimani, M., Taheri, T., & Lebbatard, M. (2002). Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/c mice: the partial protection relies on interferon gamma producing CD8(+) T lymphocyte activation. Vaccine, 20(19-20), 2439–2447. DOI: https://doi.org/10.1016/S0264-410X(02)00189-5

Rajemiarimiraho, M., Banzouzi, J. T., Nicolau-Travers, M. L., et al. (2014). Antiprotozoal activities of Millettia richardiana (Fabaceae) from Madagascar. Molecules, 19(4), 4200–4211 DOI: https://doi.org/10.3390/molecules19044200

Ray, S., Majumder, H. K., Chakravarty, A. K., Mukhopadhyay, S., Gil, R. R., et al. (1996). Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donovani. Journal of Natural Products, 59(1), 27–29 DOI: https://doi.org/10.1021/np960018g

Reina, M., Ruiz-Mesia, L., Ruiz-Mesia, W., et al. (2014). Antiparasitic indole alkaloids from Aspidosperma desmanthum and A. spruceanum from the Peruvian Amazonia. Natural Product Communications, 9(8), 1075–1080. DOI: https://doi.org/10.1177/1934578X1400900805

Rezaee, F., Zolfaghari, B., & Dinani, M. S. (2018). Isolation of dioscin-related steroidal saponin from the bulbs of Allium paradoxum L. with leishmanicidal activity. Research in Pharmaceutical Sciences, 13(5), 469–475. DOI: https://doi.org/10.4103/1735-5362.236875

Rodriguez-Sosa, M., Monteforte, G. M., & Satoskar, A. R. (2001). Susceptibility to Leishmania mexicana infection is due to the inability to produce IL-12 rather than lack of IL-12 responsiveness. Immunology and Cell Biology, 79(4), 320–322. DOI: https://doi.org/10.1046/j.1440-1711.2001.01014.x

Rossi B.R., Torres-Santos E.C., Santos A.P.P.T., et al. (2000) Treatment of cutaneous leishmaniasis with Kalanchoe pinnata: experimental and clinical data. Phytomedicine 7, 115.

Rottini, M. M., Amaral, A., Ferreira, J., et al. (2019). Endlicheria bracteolata (Meisn.) Essential Oil as a Weapon against Leishmania amazonensis: In Vitro Assay. Molecules, 24(14), 2525 DOI: https://doi.org/10.3390/molecules24142525

Russell, D. G., & Alexander, J. (1988). Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. Journal of Immunology, 140(4), 1274–1279.

Saha, S., Mukherjee, T., Chowdhury, S., et al. (2013). The lignan glycosides lyoniside and saracoside poison the unusual type IB topoisomerase of Leishmania donovani and kill the parasite both in vitro and in vivo. Biochemical Pharmacology, 86(12), 1673–1687. DOI: https://doi.org/10.1016/j.bcp.2013.10.004

Santana, R. C., Rosa, A., Mateus, M., et al. (2020). In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. Journal of Ethnopharmacology, 259, 112981 DOI: https://doi.org/10.1016/j.jep.2020.112981

Sharifi-Rad, M., Salehi, B., Sharifi-Rad, J., Setzer, W. N., & Iriti, M. (2018). Pulicaria vulgaris Gaertn. essential oil: an alternative or complementary treatment for Leishmaniasis. Cellular and Molecular Biology, 64(8), 18–21. DOI: https://doi.org/10.14715/cmb/2018.64.8.3

Sharma, N., Shukla, A. K., Das, M., & Dubey, V. K. (2012). Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitology Research, 110(1), 341–348 DOI: https://doi.org/10.1007/s00436-011-2498-x

Sharma, U., Singh, D., Kumar, P., Dobhal, M. P., & Singh, S. (2011). Antiparasitic activity of plumericin & isoplumericin isolated from Plumeria bicolor against Leishmania donovani. The Indian Journal of Medical Research, 134(5), 709–716 DOI: https://doi.org/10.4103/0971-5916.91005

Singh S. (2006). New developments in diagnosis of leishmaniasis. The Indian Journal of Medical Research, 123(3), 311–330.

Singh, M. K., Paul, J., De, T., & Chakraborti, T. (2015). Bioactivity guided fractionation of Moringa oleifera Lam. flower targeting Leishmania donovani. Indian Journal of Experimental Biology, 53(11), 747–752.

Singh, N., Kumar, A., Gupta, P., et al. (2008). Evaluation of antileishmanial potential of Tinospora sinensis against experimental visceral leishmaniasis. Parasitology Research, 102(3), 561–565 DOI: https://doi.org/10.1007/s00436-007-0822-2

Singh, S. K., Bimal, S., Narayan, S., et al. (2011). Leishmania donovani: assessment of leishmanicidal effects of herbal extracts obtained from plants in the visceral leishmaniasis endemic area of Bihar, India. Experimental Parasitology, 127(2), 552–558 DOI: https://doi.org/10.1016/j.exppara.2010.10.014

Soares, D. C., Portella, N. A., Ramos, M. F., Siani, A. C., & Saraiva, E. M. (2013). Trans- β -Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.). Evidence-Based Complementary and Alternative Medicine, 2013, 761323. DOI: https://doi.org/10.1155/2013/761323

Soong, L., Duboise, S. M., Kima, P., & McMahon-Pratt, D. (1995). Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infection and Immunity, 63(9), 3559–3566. DOI: https://doi.org/10.1128/iai.63.9.3559-3566.1995

Steverding D. (2017). The history of leishmaniasis. Parasites & Vectors, 10(1), 82. DOI: https://doi.org/10.1186/s13071-017-2028-5

Sundar, S., & Chakravarty, J. (2015a). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, 16(2), 237–252 DOI: https://doi.org/10.1517/14656566.2015.973850

Sundar, S., & Chakravarty, J. (2015b). Investigational drugs for visceral leishmaniasis. Expert Opinion on Investigational Drugs, 24(1), 43–59. DOI: https://doi.org/10.1517/13543784.2014.954035

Sundar, S., Jha, T. K., Thakur, C. P., et al. (2002). Oral miltefosine for Indian visceral leishmaniasis. The New England journal of Medicine, 347(22), 1739–1746. DOI: https://doi.org/10.1056/NEJMoa021556

Tabbara, K. S., Peters, N. C., Afrin, F., et al (2005). Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infection and Immunity, 73(8), 4714–4722. DOI: https://doi.org/10.1128/IAI.73.8.4714-4722.2005

Thakur, C. P., Bhowmick, S., Dolfi, L., & Olliaro, P. (1995). Aminosidine plus sodium stibogluconate for the treatment of Indian kala-azar: a randomized dose-finding clinical trial. Transactions of the Royal Society of Tropical Medicine and Hygiene, 89(2), 219–223. DOI: https://doi.org/10.1016/0035-9203(95)90503-0

Thakur, C. P., Olliaro, P., Gothoskar, S., et al. (1992). Treatment of visceral leishmaniasis (kala-azar) with aminosidine (= paromomycin) -antimonial combinations, a pilot study in Bihar, India. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(6), 615–616. DOI: https://doi.org/10.1016/0035-9203(92)90150-B

Torres-Santos, E. C., Lopes, D., Oliveira, R. R., et al. (2004). Antileishmanial activity of isolated triterpenoids from Pouroumaguianensis. Phytomedicine, 11(2-3), 114–120 DOI: https://doi.org/10.1078/0944-7113-00381

Tracanna, M. I., Fortuna, A. M., Cárdenas, A. V., et al. (2015). Anti-leishmanial, anti-inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica. Phytotherapy Research, 29(3), 393–397 DOI: https://doi.org/10.1002/ptr.5263

Underhill, D. M., & Ozinsky, A. (2002). Phagocytosis of microbes: complexity in action. Annual Review of Immunology, 20, 825–852. DOI: https://doi.org/10.1146/annurev.immunol.20.103001.114744

Vermelho, A.B., Supuran, T., Cardoso, V., et al. (2014) Leishmaniasis: possible new strategies for treatment. In: Claborn D. (ed) Leishmaniasis-Trends in Epidemiology, Diagnosis and Treatment, In Tech, Rijeka,-Croatia.

Vertut-Doï, A., Ohnishi, S. I., & Bolard, J. (1994). The endocytic process in CHO cells, a toxic pathway of the polyene antibiotic amphotericin B. Antimicrobial Agents and Chemotherapy, 38(10), 2373–2379. DOI: https://doi.org/10.1128/AAC.38.10.2373

Wanderley, J. L., Moreira, M. E., Benjamin, A., Bonomo, A. C., & Barcinski, M. A. (2006). Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. Journal of Immunology, 176(3), 1834–1839. DOI: https://doi.org/10.4049/jimmunol.176.3.1834

Watts, A. M., & Kennedy, R. C. (1999). DNA vaccination strategies against infectious diseases. International Journal for Parasitology, 29(8), 1149–1163. DOI: https://doi.org/10.1016/S0020-7519(99)00112-5

Weniger, B., Robledo, S., Arango, G. J., et al. (2001). Antiprotozoal activities of Colombian plants. Journal of Ethnopharmacology, 78(2-3), 193–200 DOI: https://doi.org/10.1016/S0378-8741(01)00346-4

Xia, X. (2017). Bioinformatics and Drug Discovery. Current Topics in Medicinal chemistry, 17(15), 1709–1726 DOI: https://doi.org/10.2174/1568026617666161116143440

Zhai, L., Blom, J., Chen, M., Christensen, S. B., & Kharazmi, A. (1995). The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrobial Agents and Chemotherapy, 39(12), 2742–2748 DOI: https://doi.org/10.1128/AAC.39.12.2742

Downloads

Published

2022-02-28

How to Cite

Singh, M. K. ., Das, A. ., Saha, R. P. ., Paul, J. ., & Nandi, D. . (2022). Leishmaniasis: Plants as a source of antileishmanial agents. Journal of Experimental Biology and Agricultural Sciences, 10(1), 227–247. https://doi.org/10.18006/2022.10(1).227.247

Issue

Section

PROCEEDING OF BIONEXT-2021_REVIEW ARTICLES