Applications of Artificial Intelligence in Healthcare

Authors

  • Shagufta Quazi Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
  • Rudra Prasad Saha Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India
  • Manoj Kumar Singh Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata 700126, India

DOI:

https://doi.org/10.18006/2022.10(1).211.226

Keywords:

AI, Healthcare, COVID-19, Machine Learning, Artificial Neural Network, Medical diagnosis

Abstract

Now in these days, artificial intelligence (AI) is playing a major role in healthcare. It has many applications in diagnosis, robotic surgeries, and research, powered by the growing availability of healthcare facts and brisk improvement of analytical techniques. AI is launched in such a way that it has similar knowledge as a human but is more efficient. A robot has the same expertise as a surgeon; even if it takes a longer time for surgery, its sutures, precision, and uniformity are far better than the surgeon, leading to fewer chances of failure. To make all these things possible, AI needs some sets of algorithms. In Artificial Intelligence, there are two key categories: machine learning (ML) and natural language processing (NPL), both of which are necessary to achieve practically any aim in healthcare. The goal of this study is to keep track of current advancements in science, understand technological availability, recognize the enormous power of AI in healthcare, and encourage scientists to use AI in their related fields of research. Discoveries and advancements will continue to push the AI frontier and expand the scope of its applications, with rapid developments expected in the future.

References

Abu-Hassan, K., Taylor, J. D., Morris, P. G., et al. (2019). Optimal solid-state neurons. Nature communications, 10(1), 5309. DOI: https://doi.org/10.1038/s41467-019-13177-3

Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database: the journal of biological databases and curation, 2020:baaa010. doi: 10.1093/database/baaa010. DOI: https://doi.org/10.1093/database/baaa010

Albarqouni, S., Baur, C., Achilles, F., et al. (2016). AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images. IEEE transactions on medical imaging, 35(5), 1313–1321. DOI: https://doi.org/10.1109/TMI.2016.2528120

Al-Kofahi, Y., Lassoued, W., Lee, W., & Roysam, B. (2010). Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE transactions on bio-medical engineering, 57(4), 841–852. DOI: https://doi.org/10.1109/TBME.2009.2035102

Almada, M., & Maranhão, J. (2021). Voice-based diagnosis of covid-19: ethical and legal challenges. International Data Privacy Law, ipab004. DOI:10.1093/IDPL/IPAB004. DOI: https://doi.org/10.1093/idpl/ipab004

Ameer, F., Singh, A. K., & Kumar, S. (2013). Evolution of instruments for harvest of the skin grafts. Indian journal of plastic surgery : official publication of the Association of Plastic Surgeons of India, 46(1), 28–35. DOI: https://doi.org/10.4103/0970-0358.113704

Astrakas, L. G., Naqvi, S. H., Kateb, B., & Tzika, A. A. (2012). Functional MRI using robotic MRI compatible devices for monitoring rehabilitation from chronic stroke in the molecular medicine era (Review). International Journal of Molecular Medicine, 29(6), 963–973.

Bali, J., Garg, R., & Bali, R. T. (2019). Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required?. Indian Journal of Ophthalmology, 67(1), 3–6. DOI: https://doi.org/10.4103/ijo.IJO_1292_18

Barrett, M., Boyne, J., Brandts, J., Brunner-La Rocca, H.P., et al. (2019). Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care. The EPMA Journal, 10(4), 445-464. DOI: https://doi.org/10.1007/s13167-019-00188-9

Bauder, R. A., & Khoshgoftaar, T. M. (2018). The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data. Health information science and systems, 6(1), 9. DOI: https://doi.org/10.1007/s13755-018-0051-3

Bolton, R.J., & Hand, D.J. (2002). Statistical fraud detection: a review. Statistical Science, 17, 235-255. DOI: https://doi.org/10.1214/ss/1042727940

Buch, V. H., Ahmed, I., & Maruthappu, M. (2018). Artificial intelligence in medicine: current trends and future possibilities. The British journal of general practice : the journal of the Royal College of General Practitioners, 68(668), 143–144. DOI: https://doi.org/10.3399/bjgp18X695213

Cardone, D., & Merla, A. (2017). New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences. Sensors (Basel, Switzerland), 17(5), 1042. DOI: https://doi.org/10.3390/s17051042

Celi, L.A., Davidzon, G., Johnson, A.E., et al. (2016). Bridging the Health Data Divide. Journal of medical Internet research, 18(12), 325. doi: 10.2196/jmir.6400. DOI: https://doi.org/10.2196/jmir.6400

Cell Press. (2020) Researchers restore injured man’s sense of touch using brain-computer interface technology. ScienceDaily. Retrieved from https://www.sciencedaily.com/releases/2020/04/ 200423130508.htm

Chandawarkar, A., Chartier, C., Kanevsky, J., & Cress, P. E. (2020). A Practical Approach to Artificial Intelligence in Plastic Surgery. Aesthetic surgery journal. Open forum, 2(1), ojaa001. DOI: https://doi.org/10.1093/asjof/ojaa001

Ciuti, G., Skonieczna-Żydecka, K., Marlicz, W., et al. (2020). Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. Journal of clinical medicine, 9(6), 1648. DOI: https://doi.org/10.3390/jcm9061648

Corredor, G., Wang, X., Zhou, Y., et al. (2019). Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non-Small Cell Lung Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 25(5), 1526–1534. DOI: https://doi.org/10.1158/1078-0432.CCR-18-2013

Costa, P. R., Acencio, M. L., & Lemke, N. (2010). A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC genomics, 11 Suppl 5(5), S9. DOI: https://doi.org/10.1186/1471-2164-11-S5-S9

Cury, R. C., Megyeri, I., Lindsey, T., et al. (2021). Natural Language Processing and Machine Learning for Detection of Respiratory Illness by Chest CT Imaging and Tracking of COVID-19 Pandemic in the US. Radiology. Cardiothoracic imaging, 3(1), e200596. DOI: https://doi.org/10.1148/ryct.2021200596

D'Andrea M. R. (2005). Add Alzheimer's disease to the list of autoimmune diseases. Medical Hypotheses, 64(3), 458–463. DOI: https://doi.org/10.1016/j.mehy.2004.08.024

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. DOI: https://doi.org/10.7861/futurehosp.6-2-94

Desikan, S. (2020). Coronavirus: TCS uses AI for drug discovery. The Hindu. Retrieved from https://cdn.splessons.com/wp-content/uploads/2020/04/april-5-articles-science-and-technology-the-hindu-splessons.pdf

Dogangil, G., Davies, B. L., & Rodriguez y Baena, F. (2010). A review of medical robotics for minimally invasive soft tissue surgery. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(5), 653–679. DOI: https://doi.org/10.1243/09544119JEIM591

Drori, I., Thaker, D. D., Srivatsa, A., et al. (2019). Accurate Protein Structure Prediction by Embeddings and Deep Learning Representations. Retrieved from https://arxiv.org/abs/1911.05531

Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., et a. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199–2210. DOI: https://doi.org/10.1001/jama.2017.14580

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056

Fermini, B., Hancox, J. C., Abi-Gerges, N., et al. (2016). A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. Journal of Biomolecular Screening, 21(1), 1–11. DOI: https://doi.org/10.1177/1087057115594589

Ferrero, E., Dunham, I., & Sanseau, P. (2017). In silico prediction of novel therapeutic targets using gene-disease association data. Journal of Translational Medicine, 15(1), 182. DOI: https://doi.org/10.1186/s12967-017-1285-6

Ganzer, P. D., Colachis, S. C., 4th Schwemmer, M. A. et al. (2020). Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell, 181(4), 763-773. DOI: https://doi.org/10.1016/j.cell.2020.03.054

Garry R. (2006). Laparoscopic surgery. Best practice & research. Clinical obstetrics & gynaecology, 20(1), 89–104. DOI: https://doi.org/10.1016/j.bpobgyn.2005.10.003

Ghose, A., Roy, S., Vasdev, N., Olsburgh, J., & Dasgupta, P. (2020). The Emerging Role of Artificial Intelligence in the Fight Against COVID-19. European Urology, 78(6), 775–776. DOI: https://doi.org/10.1016/j.eururo.2020.09.031

Gillinov, A. M., Mihaljevic, T., Javadikasgari, H., et al. (2018). Early results of robotically assisted mitral valve surgery: Analysis of the first 1000 cases. The Journal of Thoracic and Cardiovascular Surgery, 155(1), 82–91.e2. DOI: https://doi.org/10.1016/j.jtcvs.2017.07.037

Gouda, W., & Yasin, R. (2020). COVID-19 disease: CT Pneumonia Analysis prototype by using artificial intelligence, predicting the disease severity. The Egyptian Journal of Radiology and Nuclear Medicine, 51(1), 196. DOI: https://doi.org/10.1186/s43055-020-00309-9

Gudivada, V. N., Raghavan, V. V., Govindaraju, V., Rao, C. R. (2016) Cognitive Computing: Theory and Applications, in Handbook of Statistics, pp. 301-340. DOI: https://doi.org/10.1016/bs.host.2016.07.004

Han, S. H., Kim, K. W., Kim, S., & Youn, Y. C. (2018). Artificial Neural Network: Understanding the Basic Concepts without Mathematics. Dementia and Neurocognitive Disorders, 17(3), 83–89. DOI: https://doi.org/10.12779/dnd.2018.17.3.83

He, J., Baxter, S. L., Xu, J., et al. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. DOI: https://doi.org/10.1038/s41591-018-0307-0

Healio. (2019). Transplant tourism: A ‘pervasive’ and dangerous ‘shadow world of medicine’, Infectious disease news. Retrieved from https://www.healio.com/news/infectious-disease/20190416/ transplant-tourism-a-pervasive-and-dangerous-shadow-world-of-medicine

Hernandez, D., Garimella, R., Eltorai, A., & Daniels, A. H. (2017). Computer-assisted Orthopaedic Surgery. Orthopaedic Surgery, 9(2), 152–158. DOI: https://doi.org/10.1111/os.12323

Hessler, G., & Baringhaus, K. H. (2018). Artificial Intelligence in Drug Design. Molecules (Basel, Switzerland), 23(10), 2520. DOI: https://doi.org/10.3390/molecules23102520

Hithaishi, C. B. (2020). Tencent launches AI-powered medical imaging and data management devices. Biospectrum. Retrieved from https://www.biospectrumasia.com/article/pdf/16966

Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. (2018). Artificial intelligence in radiology. Nature reviewsCancer, 18(8), 500–510. DOI: https://doi.org/10.1038/s41568-018-0016-5

Jensen, P. S., Grace, K. W., Attariwala, R., Colgate, J. E., & Glucksberg, M. R. (1997). Toward robot-assisted vascular microsurgery in the retina. Graefe's Archive for Clinical and Experimental Ophthalmology, 235(11), 696–701. DOI: https://doi.org/10.1007/BF01880668

Jeon, J., Nim, S., Teyra, J., et al. (2014). A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 6(7), 57. DOI: https://doi.org/10.1186/s13073-014-0057-7

Jiang, F., Jiang, Y., Zhi, H., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. DOI: https://doi.org/10.1136/svn-2017-000101

Jiang, X., Coffee, M., Bari, A., et al. (2020). Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Computers, Materials & Continua 63: 537–551. DOI: https://doi.org/10.32604/cmc.2020.010691

Johnson, D., & Wilkie, A. O. (2011). Craniosynostosis. European Journal of Human Genetics 19(4), 369–376. DOI: https://doi.org/10.1038/ejhg.2010.235

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., et al. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. DOI: https://doi.org/10.1016/j.jacc.2018.03.521

Joudaki, H., Rashidian, A., Minaei-Bidgoli, B., et al. (2015). Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study. International Journal of Health Policy and Management, 5(3), 165–172. DOI: https://doi.org/10.15171/ijhpm.2015.196

Kim, Y. J., Kelley, B. P., Nasser, J. S., & Chung, K. C. (2019). Implementing Precision Medicine and Artificial Intelligence in Plastic Surgery: Concepts and Future Prospects. Plastic and Reconstructive Surgery. Global open, 7(3), e2113. DOI: https://doi.org/10.1097/GOX.0000000000002113

Kolek, M. J., Graves, A. J., Xu, M., et al. (2016). Evaluation of a Prediction Model for the Development of Atrial Fibrillation in a Repository of Electronic Medical Records. JAMA Cardiology, 1(9), 1007–1013. DOI: https://doi.org/10.1001/jamacardio.2016.3366

Kong, M., Lee, J., Yazdi, I. K., et al. (2019). Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Advanced Healthcare Materials, 8(3), e1801146. DOI: https://doi.org/10.1002/adhm.201801146

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial Intelligence in Precision Cardiovascular Medicine. Journal of the American College of Cardiology, 69(21), 2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571 DOI: https://doi.org/10.1016/j.jacc.2017.03.571

Lanfranco, A. R., Castellanos, A. E., Desai, J. P., & Meyers, W. C. (2004). Robotic surgery: a current perspective. Annals of Surgery, 239(1), 14–21. DOI: https://doi.org/10.1097/01.sla.0000103020.19595.7d

Lang, J. E., Mannava, S., Floyd, A. J., et al. (2011). Robotic systems in orthopaedic surgery. The Journal of Bone and Joint Surgery, 93(10), 1296–1299. DOI: https://doi.org/10.1302/0301-620X.93B10.27418

Lee, H., Mittal, A., Patel, K., et al. (2014). Identification of novel drug scaffolds for inhibition of SARS-CoV 3-Chymotrypsin-like protease using virtual and high-throughput screenings. Bioorganic & Medicinal Chemistry, 22(1), 167–177. DOI: https://doi.org/10.1016/j.bmc.2013.11.041

Lee, S. I., Celik, S., Logsdon, B. A., et al. (2018). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nature Communications, 9(1), 42. DOI: https://doi.org/10.1038/s41467-017-02465-5

Li, L., Qin, L., Xu, Z., et al. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. DOI: https://doi.org/10.1148/radiol.2020200905

Liebeskind D. S. (2018). Artificial intelligence in stroke care: Deep learning or superficial insight?. EBioMedicine, 35, 14–15. DOI: https://doi.org/10.1016/j.ebiom.2018.08.031

Linder, S. M., Rosenfeldt, A.B., Bay, R.C., et al. (2015). Improving Quality of Life and Depression After Stroke Through Telerehabilitation. The American journal of occupational therapy, 69(2), 6902290020p1–6902290020p10. DOI: https://doi.org/10.5014/ajot.2015.014498

Liu, B., He, H., Luo, H., Zhang, T., & Jiang, J. (2019). Artificial intelligence and big data facilitated targeted drug discovery. Stroke and Vascular Neurology, 4(4), 206–213. DOI: https://doi.org/10.1136/svn-2019-000290

Magrabi, F., Ammenwerth, E., McNair, J. B., et al. (2019). Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearbook of Medical Informatics, 28(1), 128–134. DOI: https://doi.org/10.1055/s-0039-1677903

Mashamba-Thompson, T. P., & Crayton, E. D. (2020). Blockchain and Artificial Intelligence Technology for Novel Coronavirus Disease-19 Self-Testing. Diagnostics (Basel, Switzerland), 10(4), 198. DOI: https://doi.org/10.3390/diagnostics10040198

Mayr, A., Klambauer, G., Unterthiner, T., & Hochreiter, S. (2016). DeepTox: Toxicity Prediction using Deep Learning. Frontiers in Environmental Science, 3, 80. DOI: https://doi.org/10.3389/fenvs.2015.00080

McCall, B. (2020). COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet Digit Health, 2, 166-167. DOI: https://doi.org/10.1016/S2589-7500(20)30054-6

Mehta, V., Rammohan, R., Sanivarapu, R., Sayedy, N., & Akella, J. (2020). The role of virtual assistants with coronavirus diagnosis and treatment. Chest, 158(4), A1176. DOI: https://doi.org/10.1016/j.chest.2020.08.1070

Mencattini, A., Mattei, F., Schiavoni, G., et al. (2019). From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Frontiers in pharmacology, 10, 100. DOI: https://doi.org/10.3389/fphar.2019.00100

Mohlman, J. S., Leventhal, S. D., Hansen, T., et al. (2020). Improving Augmented Human Intelligence to Distinguish Burkitt Lymphoma From Diffuse Large B-Cell Lymphoma Cases. American Journal of Clinical Pathology, 153(6), 743–759. DOI: https://doi.org/10.1093/ajcp/aqaa001

Mori, Y. (2019). Artificial intelligence and colonoscopy: the time is ripe to begin clinical trials. Endoscopy, 51, 219-220. DOI: https://doi.org/10.1055/a-0754-5556

Murff, H. J., FitzHenry, F., Matheny, M. E., et al. (2011). Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA, 306(8), 848–855. DOI: https://doi.org/10.1001/jama.2011.1204

Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T., & Sengupta, P. P. (2016). Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 68(21), 2287–2295. DOI: https://doi.org/10.1016/j.jacc.2016.08.062

Oboudiyat, C., Glazer, H., Seifan, A., Greer, C., & Isaacson, R. S. (2013). Alzheimer's disease. Seminars in Neurology, 33(4), 313–329. DOI: https://doi.org/10.1055/s-0033-1359319

Pahl, E., Emery, R. W., Noce, M., et al. (2020). Mobile Application for Communication Increases the Efficiency of Organ Procurement and Transplantation. Progress in transplantation (Aliso Viejo, Calif.), 30(2), 172–176. DOI: https://doi.org/10.1177/1526924820913503

Pandey, S. K., & Sharma, V. (2019). Robotics and ophthalmology: Are we there yet?. Indian Journal of Ophthalmology, 67(7), 988–994. DOI: https://doi.org/10.4103/ijo.IJO_1131_18

Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., & Nanayakkara, P. (2019). Introducing Artificial Intelligence Training in Medical Education. JMIR Medical Education, 5(2), e16048. DOI: https://doi.org/10.2196/16048

Park, Y. S., & Lek, S. (2016). Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. In Developments in Environmental Modelling, 28, 123-140. DOI: https://doi.org/10.1016/B978-0-444-63623-2.00007-4

Pavlou, M., Ambler, G., Seaman, S. R., et al. (2015). How to develop a more accurate risk prediction model when there are few events. BMJ (Clinical research ed.), 351, h3868. DOI: https://doi.org/10.1136/bmj.h3868

Pradhan, P., Mishra, A. S., & Habeebullah, H. (2020). Organ donation-an android application. SSRN Electronic Journal, 7(12), 85-89.

Raleigh. (2017). TeleHealth Services Redefines Patient Engagement, Launches iCare Navigator with AI-Driven Virtual Health Coach. TeleHealth Press Release. Retrieved from https://www.telehealthservices.com/sites/default/files/TeleHealth_Press_Release_iCN_10-11-17.pdf

Ravi, D., Wong, C., Deligianni, F., et al. (2017) Deep Learning for Health Informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4-21. DOI: https://doi.org/10.1109/JBHI.2016.2636665

Rennie, S., Buchbinder, M., Juengst, E., et al. (2020). Scraping the Web for Public Health Gains: Ethical Considerations from a 'Big Data' Research Project on HIV and Incarceration. Public Health Ethics, 13(1), 111–121. DOI: https://doi.org/10.1093/phe/phaa006

Rogers, A. J., Miller, J. M., Kannappan, R., & Sethu, P. (2019). Cardiac Tissue Chips (CTCs) for Modeling Cardiovascular Disease. IEEE Transactions on Bio-medical Engineering, 66(12), 3436–3443. DOI: https://doi.org/10.1109/TBME.2019.2905763

Rouillard, A. D., Hurle, M. R., & Agarwal, P. (2018). Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets. PLoS Computational Biology, 14(5), e1006142. DOI: https://doi.org/10.1371/journal.pcbi.1006142

Sadhika. (2019). Fintalk. Bank of Baroda. Retrieved from https://www.bankofbaroda.in/writereaddata/Portal/Fintalk/466_1_Fintalk-05-02-19.pdf

Saltz, J., Gupta, R., Hou, L., et al. (2018). Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 23(1), 181–193. DOI: https://doi.org/10.1016/j.celrep.2018.03.086

Santosh, K. C. (2020). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of Medical Systems, 44(5), 93. DOI: https://doi.org/10.1007/s10916-020-01562-1

Shah, P., Kendall, F., Khozin, S., et al. (2019). Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digital Medicine, 2, 69. DOI: https://doi.org/10.1038/s41746-019-0148-3

Shen, J., Zhang, C., Jiang, B., et al. (2019) Artificial Intelligence Versus Clinicians in Disease Diagnosis: Systematic Review. JMIR Medical Informatics, 7(3), e10010. DOI: https://doi.org/10.2196/10010

Siemens Healthcare GmbH. (2021). Siemens Healthineers Digital Marketplace Online Help – Online Guide. Retrieved from https://marketplace.teamplay.siemens.com/api/download/media/digital_marketplace_user_guide.pdf

Singh, H., Modi, H. N., Ranjan, S., et al. (2018). Robotic Surgery Improves Technical Performance and Enhances Prefrontal Activation During High Temporal Demand. Annals of Biomedical Engineering, 46(10), 1621–1636. DOI: https://doi.org/10.1007/s10439-018-2049-z

Singh, S., Dalla, V. K., & Shrivastava, A. (2021). Combating COVID-19: Study of robotic solutions for COVID-19, AIP Conference Proceedings. Retreived from https://aip.scitation.org/ doi/pdf/10.1063/5.0050148 DOI: https://doi.org/10.1063/5.0050148

Spasic, I., & Nenadic, G. (2020). Clinical Text Data in Machine Learning: Systematic Review. JMIR Medical Informatics, 8(3), e17984 DOI: https://doi.org/10.2196/17984

Tanna, S. (2013). Alzheimer’s Disease (AD). Priority Medicines. Retrieved from https://www.who.int/medicines/areas/ priority_medicines/BP6_11Alzheimer.pdf

The Hindu. (2020). Mumbai students develop AI-based voice tool to detect COVID-19. Sci-tech. Retrieved from https://www.thehindu.com/sci-tech/technology/mumbai-students-develop-ai-based-voice-tool-to-detect-covid-19/article31360091.ece

Tran, B. X., Latkin, C. A., Vu, G. T., et al. (2019). The Current Research Landscape of the Application of Artificial Intelligence in Managing Cerebrovascular and Heart Diseases: A Bibliometric and Content Analysis. International Journal of Environmental Research and Public Health, 16 (15), 2699. DOI: https://doi.org/10.3390/ijerph16152699

Tsirbas, A., Mango, C., & Dutson, E. (2007). Robotic ocular surgery. The British Journal of Ophthalmology, 91(1), 18-21. DOI: https://doi.org/10.1136/bjo.2006.096040

University of Bath. (2019). World first as artificial neurons developed to cure chronic diseases. Press release. Retrieved from https://www.bath.ac.uk/announcements/world-first-as-artificial-neurons-developed-to-cure-chronic-diseases/

Urias, M. G., Patel, N., He, C., et al. (2019). Artificial intelligence, robotics and eye surgery: are we overfitted?. International Journal of Retina and Vitreous, 5, 52. DOI: https://doi.org/10.1186/s40942-019-0202-y

Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature reviews. Drug discovery, 18(6), 463-477. DOI: https://doi.org/10.1038/s41573-019-0024-5

Velten, J. C., Arif, R., & Moehring, D. (2007). Managing Disclosure through Social Media: How Snapchat is Shaking Boundaries of Privacy Perceptions. Core. Retrieved from https://core.ac.uk/download/pdf/276236099.pdf

NYU Langone Health / NYU School of Medicine. (2020). Experimental AI tool predicts which COVID-19 patients develop respiratory disease. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2020/03/200330152135.htm

Yeong, E. K., Hsiao, T. C., Chiang, H. K., & Lin, C. W. (2005). Prediction of burn healing time using artificial neural networks and reflectance spectrometer. Burns : Journal of the International Society for Burn Injuries, 31(4), 415–420. DOI: https://doi.org/10.1016/j.burns.2004.12.003

Zaharchuk, G., Gong, E., Wintermark, M., Rubin, D., & Langlotz, C. P. (2018). Deep Learning in Neuroradiology. AJNR. American Journal of Neuroradiology, 39(10), 1776–1784. DOI: https://doi.org/10.3174/ajnr.A5543

Downloads

Published

2022-02-28

How to Cite

Quazi, S. ., Saha, R. P. ., & Singh, M. K. . (2022). Applications of Artificial Intelligence in Healthcare. Journal of Experimental Biology and Agricultural Sciences, 10(1), 211–226. https://doi.org/10.18006/2022.10(1).211.226

Issue

Section

PROCEEDING OF BIONEXT-2021_REVIEW ARTICLES