An overview of heat-stress response regulation in Gram-negative bacteria considering Escherichia coli as a model organism

Authors

  • Deborupa Paul Department of Microbiology, School of Life Science & Biotechnology, Adamas University, West Bengal
  • Sanmitra Ghosh Department of Microbiology, School of Life Science & Biotechnology, Adamas University, West Bengal

DOI:

https://doi.org/10.18006/2022.10(1).190.200

Keywords:

Heat shock protein, Heat shock response, Stress, Sigma factor

Abstract

Response to heat stress (HSR) is a key stress response for endurance in Escherichia coli mediated by transcriptional factor σ-32. Even though there has been extensive investigation on the contribution of proteins and chaperones in retaining protein stability in cells under stress conditions, limited information is available regarding the dynamic nature of mechanisms regulating the activity of the highly conserved heat shock proteins (Hsps). Several gene expression-based studies suggest the pivotal role of Hsp70 (DnaK) in the regulation of the expression of heat shock genes (Hsg). Direct interaction of Hsp70 with σ-32 may regulate this function in E. coli.  Recent studies revealed that localization of σ-32 to the membrane interior by SRP-dependent pathway enables them to function appropriately in their role as regulators. The contributions of different cellular components including cell membrane remain unknown. Other cellular components or σ-32 interfere with polypeptides which could play a crucial role in cell survival. Sigma factor monitors and preserves outer membrane integrity of E. coli by stimulating the genes regulating outer membrane proteins (OMPs) and lipopolysaccharide (LPS) assemblage as well as through expression of small RNAs to down-regulate surplus unassembled OMPs. σ-E activity is regulated by the rate at which its membrane-encompassing anti-sigma factor, RseA is degraded. Mutations in rseA are reported to constitutively increase the sigma (E) activity that is validated at both genetic and biochemical levels. In this review, the basic mechanism of heat stress regulation in gram-negative bacteria has been elaborated using E. coli as a model organism.

References

Bittner, L. M., Arends, J., & Narberhaus, F. (2016). Mini review: ATP‐dependent proteases in bacteria. Biopolymers, 105(8), 505-517. DOI: https://doi.org/10.1002/bip.22831

Blaszczak, A., Zylicz, M., Georgopoulos, C., & Liberek, K. (1995). Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. The EMBO Journal, 14(20), 5085-5093. DOI: https://doi.org/10.1002/j.1460-2075.1995.tb00190.x

Carroni, M., Kummer, E., Oguchi, Y., Wendler, P., et al. (2014). Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. E Life, 3, e02481. DOI: https://doi.org/10.7554/eLife.02481

Cezairliyan, B. O., & Sauer, R. T. (2007). Inhibition of regulated proteolysis by RseB. Proceedings of the National Academy of Sciences, 104(10), 3771-3776. DOI: https://doi.org/10.1073/pnas.0611567104

Chaba, R., Alba, B. M., Guo, M. S., Sohn, J., et al. (2011). Signal integration by DegS and RseB governs the σE-mediated envelope stress response in Escherichia coli. Proceedings of the National Academy of Sciences, 108(5), 2106-2111. DOI: https://doi.org/10.1073/pnas.1019277108

De Reuse, H., Vinella, D., & Cavazza, C. (2013). Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. Frontiers in Cellular and Infection Microbiology, 3, 94. DOI: https://doi.org/10.3389/fcimb.2013.00094

Díaz-Villanueva, J. F., Díaz-Molina, R., & García-González, V. (2015). Protein folding and mechanisms of proteostasis. International Journal of Molecular Sciences, 16(8), 17193-17230. DOI: https://doi.org/10.3390/ijms160817193

Feng, X., He, C., Jiao, L., Liang, X., Zhao, R., & Guo, Y. (2019). Analysis of differential expression proteins reveals the key pathway in response to heat stress in Alicyclobacillus acidoterrestris DSM 3922T. Food Microbiology, 80, 77-84. DOI: https://doi.org/10.1016/j.fm.2019.01.003

Fiebif, A., Herrou, J., Willett, J., Crosson, S.(2015). General stress signalling in alpha-proteobacteria. Annual Review of Genetics, 49: 603-625

Fiebig, A., Herrou, J., Willett, J., & Crosson, S. (2015). General stress signaling in the Alpha-proteobacteria. Annual Review of Genetics, 49, 603-625. DOI: https://doi.org/10.1146/annurev-genet-112414-054813

Gamer, J., Bujard, H., & Bukau, B. (1992). Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell, 69(5), 833-842. DOI: https://doi.org/10.1016/0092-8674(92)90294-M

Gamer, J., Multhaup, G., Tomoyasu, T., McCarty, J. S., et al. (1996). A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. The EMBO Journal, 15(3), 607-617. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb00393.x

Giuliodori, A. M., Gualerzi, C. O., Soto, S., Vila, J., &Tavío, M. M. (2007). Review on bacterial stress topics. Annals of the New York Academy of Sciences, 1113(1), 95-104. DOI: https://doi.org/10.1196/annals.1391.008

Grigorova, I. L., Chaba, R., Zhong, H. J., Alba, B. M., et al. (2004). Fine-tuning of the Escherichia coli σE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes and Development, 18(21), 2686-2697. DOI: https://doi.org/10.1101/gad.1238604

Helmann, J. D. (2002). The extracytoplasmic function (ECF) sigma factors. Advances in Microbial Physiology, 46, 47-110. DOI: https://doi.org/10.1016/S0065-2911(02)46002-X

Helmann, J. D. (2010). Regulation by alternative sigma factors. In Storz, G., Hengge, R. (eds), Bacterial Stress Responses (pp. 31-43), Wiley Online Library. DOI: https://doi.org/10.1128/9781555816841.ch3

Henderson, B., & Martin, A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infection and Immunity, 79(9), 3476-3491. DOI: https://doi.org/10.1128/IAI.00179-11

Herman, C., Thévenet, D., D'Ari, R. I. C. H. A. R. D., & Bouloc, P. (1995). Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proceedings of the National Academy of Sciences, 92(8), 3516-3520. DOI: https://doi.org/10.1073/pnas.92.8.3516

Horikoshi, M., Yura, T., Tsuchimoto, S., Fukumori, Y., & Kanemori, M. (2004). Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity. Journal of Bacteriology, 186(22), 7474-7480. DOI: https://doi.org/10.1128/JB.186.22.7474-7480.2004

Hoynes-O’Connor, A., & Moon, T. S. (2016). Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synthetic Biology, 5(12), 1441-1454. DOI: https://doi.org/10.1021/acssynbio.6b00036

Ito, K., & Akiyama, Y. (2005). Cellular functions, mechanism of action, and regulation of FtsH protease. Annual Reviews of Microbiology, 59, 211-231. DOI: https://doi.org/10.1146/annurev.micro.59.030804.121316

Jacobs, A. T., & Marnett, L. J. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts of Chemical Research, 43(5), 673-683. DOI: https://doi.org/10.1021/ar900286y

Kanehara, K., Ito, K., & Akiyama, Y. (2002). YaeL (EcfE) activates the ςE pathway of stress response through a site-2 cleavage of anti-ςE, RseA. Genes and development, 16(16), 2147-2155. DOI: https://doi.org/10.1101/gad.1002302

Kanehara, K., Ito, K., & Akiyama, Y. (2003). YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. The EMBO Journal, 22(23), 6389-6398. DOI: https://doi.org/10.1093/emboj/cdg602

Kanemori, M., Nishihara, K., Yanagi, H., & Yura, T. (1997). Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Journal of Bacteriology, 179(23), 7219-7225. DOI: https://doi.org/10.1128/jb.179.23.7219-7225.1997

Kansanen, E., Bonacci, G., Schopfer, F. J., Kuosmanen, S. M., et al. (2011). Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. Journal of Biological Chemistry, 286(16), 14019-14027. DOI: https://doi.org/10.1074/jbc.M110.190710

Li, Z., Nimtz, M., & Rinas, U. (2017). Global proteome response of Escherichia coli BL21 to production of human basic fibroblast growth factor in complex and defined medium. Engineering in Life Sciences, 17(8), 881-891. DOI: https://doi.org/10.1002/elsc.201700036

Lim, B., Miyazaki, R., Neher, S., Siegele, D. A., et al. (2013). Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biology, 11(12), e1001735. DOI: https://doi.org/10.1371/journal.pbio.1001735

Lima, S., Guo, M. S., Chaba, R., Gross, C. A., & Sauer, R. T. (2013). Dual molecular signals mediate the bacterial response to outer-membrane stress. Science, 340(6134), 837-841. DOI: https://doi.org/10.1126/science.1235358

Matuszewska, M., Kuczyńska-Wiśnik, D., Laskowska, E., & Liberek, K. (2005). The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. Journal of Biological Chemistry, 280(13), 12292-12298. DOI: https://doi.org/10.1074/jbc.M412706200

Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J., & Gross, C. A. (1993). The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes and Development, 7(12b), 2618-2628. DOI: https://doi.org/10.1101/gad.7.12b.2618

Missiakas, D., Mayer, M. P., Lemaire, M., Georgopoulos, C., & Raina, S. (1997). Modulation of the Escherichia coliσE (RpoE) heat‐shock transcription‐factor activity by the RseA, RseB and RseC proteins. Molecular Microbiology, 24(2), 355-371. DOI: https://doi.org/10.1046/j.1365-2958.1997.3601713.x

Missiakas, D., Schwager, F., Betton, J. M., Georgopoulos, C., & Raina, S. (1996). Identification and characterization of HsIVHsIU (ClpQClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. The EMBO Journal, 15(24), 6899-6909. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb01082.x

Miyazaki, R., Yura, T., Suzuki, T., Dohmae, N., Mori, H., & Akiyama, Y. (2016). A novel SRP recognition sequence in the homeostatic control region of heat shock transcription factor σ32. Scientific Reports, 6(1), 1-11. DOI: https://doi.org/10.1038/srep24147

Müller, A., Hoffmann, J. H., Meyer, H. E., Narberhaus, F., Jakob, U., & Leichert, L. I. (2013). Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. Journal of Bacteriology, 195(12), 2807-2816. DOI: https://doi.org/10.1128/JB.00127-13

Nagai, H., Yuzawa, H., & Yura, T. (1991). Interplay of two cis-acting mRNA regions in translational control of sigma 32 synthesis during the heat shock response of Escherichia coli. Proceedings of the National Academy of Sciences, 88(23), 10515-10519. DOI: https://doi.org/10.1073/pnas.88.23.10515

Noguchi, A., Ikeda, A., Mezaki, M., Fukumori, Y., & Kanemori, M. (2014). DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. Journal of Bacteriology, 196(9), 1694-1703. DOI: https://doi.org/10.1128/JB.01197-13

Nonaka, G., Blankschien, M., Herman, C., Gross, C. A., & Rhodius, V. A. (2006). Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes and Development, 20(13), 1776-1789. DOI: https://doi.org/10.1101/gad.1428206

Obrist, M., & Narberhaus, F. (2005). Identification of a turnover element in region 2.1 of Escherichia coli σ32 by a bacterial one-hybrid approach. Journal of Bacteriology, 187(11), 3807-3813. DOI: https://doi.org/10.1128/JB.187.11.3807-3813.2005

Obrist, M., Langklotz, S., Milek, S., Führer, F., & Narberhaus, F. (2009). Region C of the Escherichia coli heat shock sigma factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiology Letters, 290(2), 199-208. DOI: https://doi.org/10.1111/j.1574-6968.2008.01423.x

Obrist, M., Milek, S., Klauck, E., Hengge, R., & Narberhaus, F. (2007). Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (σ32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology, 153(8), 2560-2571. DOI: https://doi.org/10.1099/mic.0.2007/007047-0

Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs Jr, W. R., & Hatfull, G. F. (2005). GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell, 123(5), 861-873. DOI: https://doi.org/10.1016/j.cell.2005.09.012

Pirkkala, L., Nykänen, P., & Sistonen, L. E. A. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15(7), 1118-1131. DOI: https://doi.org/10.1096/fj00-0294rev

Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18(12), 571-573. DOI: https://doi.org/10.1007/BF02172188

Rodriguez, F., Arsène-Ploetze, F., Rist, W., Rüdiger, S., et al. (2008). Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones. Molecular Cell, 32(3), 347-358. DOI: https://doi.org/10.1016/j.molcel.2008.09.016

Roncarati, D., & Scarlato, V. (2017). Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiology Reviews, 41(4), 549-574. DOI: https://doi.org/10.1093/femsre/fux015

Schumann, W. (2012). Thermosensory stems in eubacteria. Sensing in Nature, 1-16. DOI: https://doi.org/10.1007/978-1-4614-1704-0_1

Schumann, W. (2016). Regulation of bacterial heat shock stimulons. Cell Stress and Chaperones, 21(6), 959-968. DOI: https://doi.org/10.1007/s12192-016-0727-z

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z., & Hwa, T. (2010). Interdependence of cell growth and gene expression: origins and consequences. Science, 330(6007), 1099-1102. DOI: https://doi.org/10.1126/science.1192588

Seo, S. W., Yang, J., Min, B. E., Jang, S., et al. (2013). Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnology Advances, 31(6), 811-817. DOI: https://doi.org/10.1016/j.biotechadv.2013.03.012

Suzuki, H., Ikeda, A., Tsuchimoto, S., Adachi, K. I., et al. (2012). Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. Journal of Biological Chemistry, 287(23), 19275-19283. DOI: https://doi.org/10.1074/jbc.M111.331470

Tissieres, A., Mitchell, H.K., Tracy, U.M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398. DOI: https://doi.org/10.1016/0022-2836(74)90447-1

Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., et al. (1995). Escherichia coli FtsH is a membrane‐bound, ATP‐dependent protease which degrades the heat‐shock transcription factor sigma 32. The EMBO Journal, 14(11), 2551-2560. DOI: https://doi.org/10.1002/j.1460-2075.1995.tb07253.x

Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52-56. DOI: https://doi.org/10.1016/j.tim.2004.12.006

Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M., & Hartl, F. U. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology, 2(12), a004390. DOI: https://doi.org/10.1101/cshperspect.a004390

Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A., & Sauer, R. T. (2003). OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell, 113(1), 61-71. DOI: https://doi.org/10.1016/S0092-8674(03)00203-4

Wawrzynow, A., Banecki, B., & Zylicz, M. (1996). The ClpATPases define a novel class of molecular chaperones. Molecular Microbiology, 21(5), 895-899. DOI: https://doi.org/10.1046/j.1365-2958.1996.421404.x

Wierstra, I. (2013). The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Advances in Cancer Research, 118, 97-398. DOI: https://doi.org/10.1016/B978-0-12-407173-5.00004-2

Xu, X., Niu, Y., Liang, K., Wang, J., Li, X., & Yang, Y. (2015). Heat shock transcription factor δ32 is targeted for degradation via an ubiquitin-like protein ThiS in Escherichia coli. Biochemical and Biophysical Research Communications, 459(2), 240-245. DOI: https://doi.org/10.1016/j.bbrc.2015.02.087

Yura, T. (2019). Regulation of the heat shock response in Escherichia coli: history and perspectives. Genes and Genetic Systems, 94(3),103-108. DOI: https://doi.org/10.1266/ggs.19-00005

Yura, T., & Nakahigashi, K. (1999). Regulation of the heat-shock response. Current Opinion in Microbiology, 2(2), 153-158. DOI: https://doi.org/10.1016/S1369-5274(99)80027-7

Yura, T., Nagai, H., & Mori, H. (1993). Regulation of the heat-shock response in bacteria. Annual Review of Microbiology, 47(1), 321-350. DOI: https://doi.org/10.1146/annurev.mi.47.100193.001541

Yuzawa, H., Nagai, H., Mori, H., & Yura, T. (1993). Heat induction of θ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Research, 21(23), 5449-5455. DOI: https://doi.org/10.1093/nar/21.23.5449

Zhang, Y., Xiao, Z., Zou, Q., Fang, J., et al. (2017). Ribosome profiling reveals genome-wide cellular translational regulation upon heat stress in Escherichia coli. Genomics, Proteomics and Bioinformatics, 15(5), 324-330. DOI: https://doi.org/10.1016/j.gpb.2017.04.005

Zhao, K., Liu, M., & Burgess, R. R. (2005). The global transcriptional response of Escherichia coli to induced σ32 protein involves σ32 regulon activation followed by inactivation and degradation of σ32 in vivo. Journal of Biological Chemistry, 280(18), 17758-17768. DOI: https://doi.org/10.1074/jbc.M500393200

Downloads

Published

2022-02-28

How to Cite

Paul, D. ., & Ghosh, S. . (2022). An overview of heat-stress response regulation in Gram-negative bacteria considering Escherichia coli as a model organism. Journal of Experimental Biology and Agricultural Sciences, 10(1), 190–200. https://doi.org/10.18006/2022.10(1).190.200

Issue

Section

PROCEEDING OF BIONEXT-2021_REVIEW ARTICLES