Impact of the non-biodegradable plastics and role of microbes in biotic degradation

Authors

  • Soham Biswas School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
  • Arpita Das School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
  • Joydeep Paul School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
  • Tuhin Bhadra School of Basic and Applied Sciences, Adamas University, Kolkata 700126, West Bengal, India
  • Abinit Saha School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India

DOI:

https://doi.org/10.18006/2022.10(1).171.189

Keywords:

Plastic, Polymer, Ecosystem, Enzymes, Management

Abstract

Plastic is a group of elastic organic compounds whose definition has radically changed from being a large family of useful polymers to an indispensable part of life.  We might say we are residing in the “era of plasticene”. If we simply pause and look around, we would realize that a majority of things in our daily life comprise plastic polymers.  Currently, the international production of these polymers has spiked to around 300 million metric tons annually. Surprisingly about 50 percent of the products are discarded within a year of fabrication.  Once discarded ‘outside’ they end up ‘somewhere’ and start exerting their disruptive consequences.  Despite its enormous utility, it is now being increasingly known that these polymers are surely not without their downsides.  Several steps are taken and even more, are being investigated so the mayhem of plastic doesn't prove for a "no pilot in cockpit" situation. Here we have conducted a review work of the available literature on various biological entities that can utilize plastic while at the same time focusing our attempts to assemble information regarding the probable enzymes that do it.  We have also provided a report on the effect of different plastics on the ecosystem and the various management alternatives out there.

References

Acevedo, F., Pizzul, L., del Pilar Castillo, M., Cuevas, R., & Diez, M. C. (2011). Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. Journal of Hazardous Materials,185(1), 212–219. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.020

Aggarwal, S. L., & Sweeting, O. J. (1957). Polyethylene: Preparation, Structure, And Properties. Chemical Reviews, 57(4), 665–742. DOI: https://doi.org/10.1021/cr50016a004

Agrawal, K., Verma, P., & Chaturvedi, V. (2018). Fungal laccase discovered but yet undiscovered. Bioresources and Bioprocessimg, 5, 4 (2018). https://doi.org/10.1186/s40643-018-0190-z DOI: https://doi.org/10.1186/s40643-018-0190-z

Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35. Applied and Environmental Microbiology, 64(1), 62‐67. DOI: https://doi.org/10.1128/AEM.64.1.62-67.1998

Álvarez-Barragán, J., Domínguez-Malfavón, L., Vargas-Suárez, M., González-Hernández, R. et al. (2016). Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Applied and Environment Microbiology, 82(17), 5225‐5235. DOI: https://doi.org/10.1128/AEM.01344-16

Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596‐1605. DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of The Royal Society London B, 364(1526), 1977‐1984. DOI: https://doi.org/10.1098/rstb.2008.0304

Anthony, L., Pometto I. I. I., Byungta, L., & Kenneth, E. J. (1992). Production of an Extracellular Polyethylene-Degrading Enzyme(s) by Streptomyces Species. Applied and Environmental Microbiology, 58(2), 731-733. DOI: https://doi.org/10.1128/aem.58.2.731-733.1992

Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., et al. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 200. DOI: https://doi.org/10.1186/s12934-019-1248-0

Atis, S., Tutluoglu, B., Levent, E., Ozturk, C., et al. (2005). The respiratory effects of occupational polypropylene flock exposure. European Respiratory Journal, 25(1), 110‐117. DOI: https://doi.org/10.1183/09031936.04.00138403

Awasthi, S., Srivastava, N., Singh, T., Tiwary, D., & Mishra, P. K. (2017). Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech, 7(1):73. DOI: https://doi.org/10.1007/s13205-017-0699-4

Awet, T. T., Kohl, Y., Meier, F., & Straskraba, S. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 11. DOI: https://doi.org/10.1186/s12302-018-0140-6

Balakrishnan, G., Déniel, M., Nicolai, T., Chassenieux, C., & Lagarde, F. (2019). Towards more realistic reference microplastics and nanoplastics: Preparation of polyethylene micro/nanoparticles with biosurfactant. Environmental Science: Nano, 6, 315-324 DOI: https://doi.org/10.1039/C8EN01005F

Barratt SR, Ennos AR, Greenhalgh M, Robson GD, & Handley PS (2003). Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. Journal of Applied Microbiology, 95(1), 78‐85. DOI: https://doi.org/10.1046/j.1365-2672.2003.01961.x

Barrios-Estrada C, de Jesús Rostro-Alanis M, Parra, A.L., Belleville, M.P., et al. (2018). Potentialities of active membranes with immobilized laccase for bisphenol A degradation. International Journal of Biological Macromolecules, 108, 837–44. DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.177

Bashford, D. (1997) Medium Density Polyethylene (MDPE). In: Thermoplastics. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-1531-2_17

Beiras, R., Bellas, J., Cormier, B., Cousin, X., et al. (2018) Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. Journal of Hazardous Materials, 360, 452-460. DOI: https://doi.org/10.1016/j.jhazmat.2018.07.101

Bhakta, C. (2017). Polymers. In Bakta C (Ed). Organic chemistry vol. 2: Chemistry of Polymers and Biomolecules, Patna, India.

Cacciari, I., Quatrini, P., Mincione, E., Vinciguerra, V., Lupattelli, P., & Sermanni, G. (1993). Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Applied and Environmental Microbiology, 59(11), 3695‐3700. DOI: https://doi.org/10.1128/aem.59.11.3695-3700.1993

Caron, A. G. M., Thomas, C. R., Berry, K.L.E., Motti, C.A., Ariel, E., & Brodie, J.E. (2018). Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Marine Pollution Bulletin, 127, 743‐751. DOI: https://doi.org/10.1016/j.marpolbul.2017.12.062

Caruso, G. (2015). Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. Journal of Pollution Effects and Control, 3(03), e112. DOI: https://doi.org/10.4172/2375-4397.1000e112

Chauhan, D., Agrawal, G., Deshmukh, S., Roy, S.S., & Priyadarshini, R. (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 8(66), 37590–37599. DOI: https://doi.org/10.1039/C8RA06448B

Chen, C. C., Han, X., Ko, T. P., Liu, W., & Guo, R. T. (2018). Structural studies reveal the molecular mechanism of PETase. The FEBS Journal, 285(20), 3717‐3723. DOI: https://doi.org/10.1111/febs.14612

Chen, Y., Liu, X., Leng, Y., & Wang, J. (2020). Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicology and Environment Safety, 187, 109788. DOI: https://doi.org/10.1016/j.ecoenv.2019.109788

Chowdhary, P., Shukla, G., Raj, G., Ferreira, L. F. R., & Bhargava, R. N. (2019). Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Applied Sciennces, 1, 45. DOI: https://doi.org/10.1007/s42452-018-0046-3

Christenson, E. M., Patel, S., Anderson, J. M., & Hiltner, A. (2006). Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials, 27(21), 3920-3926. DOI: https://doi.org/10.1016/j.biomaterials.2006.03.012

Cózar, A., Echevarría, F., González-Gordillo, J.I., Irigoien, X., et al. (2014). Plastic debris in the open ocean. Proceedings of the National Academy of Sciences, 111(28):10239–10244 DOI: https://doi.org/10.1073/pnas.1314705111

Crabbe, J. R., Campbell, J. R., Thompson, L., Walz, S. L., & Schultz, W. W. (1994). Biodegradation of a colloidal ester-based polyurethane by soil fungi. International Biodeterioration & Biodegradation, 33(2):103–113. DOI: https://doi.org/10.1016/0964-8305(94)90030-2

Darby, R.T., & Kaplan, A.M. (1968) Fungal susceptibility of polyurethanes. Applied Microbiology, 16, 900– 905.

Danso, D., Schmeisser, C., Ok Y.S., Tsang, C.W.D., & Hou, D. (2018). New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied Environmental Microbiology, 84(8), e02773-17. DOI: https://doi.org/10.1128/AEM.02773-17

Darby, R. T., & Kaplan, A. M. (1968). Fungal susceptibility of polyurethanes. Applied Microbiology, 16(6), 900-905. DOI: https://doi.org/10.1128/am.16.6.900-905.1968

De Tender, C. A., Devriese, L. I., Haegeman, A., Maeset, S., et al. (2015). Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environment Science and Technology, 49(16), 9629–9638. DOI: https://doi.org/10.1021/acs.est.5b01093

Deguchi, T., Kakezawa, M., & Nishida, T. (1997). Nylon biodegradation by lignin-degrading fungi. Applied and Environment Microbiology, 63, 329–331. DOI: https://doi.org/10.1128/aem.63.1.329-331.1997

Ehara, K., Iiyoshi, Y., Tsutsumi, Y., & Nishida, T. (2000). Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. Journal of Wood Science, 46, 180–183. DOI: https://doi.org/10.1007/BF00777369

Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F., & Esmaeili, E. (2013). Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One, 8(9), e71720. DOI: https://doi.org/10.1371/journal.pone.0071720

Falade, A. O., Nwodo, U. U., Iweriebor, B.C., Green, E., Mabinya, L.V., & Okoh, A.I. (2017). Lignin peroxidase functionalities and prospective applications. Microbiology open, 6(1), e00394. DOI: https://doi.org/10.1002/mbo3.394

Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., et al. (2018). Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302‐1312. DOI: https://doi.org/10.1016/j.bpj.2018.02.005

Fossi, M. C., Panti, C., Guerranti, C., Coppola, D., et al. (2012). Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Marine Pollution Bulletin, 64(11), 2374‐2379. DOI: https://doi.org/10.1016/j.marpolbul.2012.08.013

Fujisawa, M., Hirai, H., & Nishida, T. (2001). Degradation of Polyethylene and Nylon-66 by the Laccase-Mediator System. Journal of Polymers and the Environment, 9, 103–108. DOI: https://doi.org/10.1023/A:1020472426516

Gaitan, I. J., Medina, S. C., González, J. C., Rodríguez, A., et al. (2011). Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresource Technology 102(3), 3632–3635. DOI: https://doi.org/10.1016/j.biortech.2010.11.040

Gallo, F., Fossi, C., Weber, R., Santillo, D., et al. (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30(1), 13. DOI: https://doi.org/10.1186/s12302-018-0139-z

Gautam, R., Bassi, A.S., & Yanful, E.K. (2007). Candida rugosa lipase catalyzed polyurethane degradation in aqueous medium. Biotechnology Letters, 29,1081–1086. DOI: https://doi.org/10.1007/s10529-007-9354-1

Gewert, M. M., Plassmann, B., & MacLeod, M. (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts, 17, 1513. DOI: https://doi.org/10.1039/C5EM00207A

Geyer, R., Jambeck, J.R., & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. DOI: https://doi.org/10.1126/sciadv.1700782

Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology, 52, 34-41. DOI: https://doi.org/10.1016/j.nbt.2019.04.005

Goodship, V. (2007). Plastic recycling. Science progress, 90(Pt 4), 245-68. DOI: https://doi.org/10.3184/003685007X228748

Graca, B., Bełdowska, M., Wrzesień, P., & Zgrundo, A. (2014). Styrofoam debris as a potential carrier of mercury within ecosystems. Environmental Science and Pollution Research, 21(3), 2263-2271. DOI: https://doi.org/10.1007/s11356-013-2153-4

Gulmine, J.V., Janissek, P.R., Heise, H.M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557–563. DOI: https://doi.org/10.1016/S0142-9418(01)00124-6

Lopez, V., Chamoux, A., Tempier, M., Thiel, H., et al. (2013). The long-term effects of occupational exposure to vinyl chloride monomer on microcirculation: a cross-sectional study 15 years after retirement. BMJ Open, 3(6), e002785–e002785. DOI: https://doi.org/10.1136/bmjopen-2013-002785

Hedrick, H. G., & Crum, M. G. (1968). Effects of jet-fuel microbial isolates on a polyurethane foam. Applied Microbiology, 16(12),1826‐1830. DOI: https://doi.org/10.1128/am.16.12.1826-1830.1968

Heindler, F. M., Alajmi, F., Huerlimann, R., Zeng, C., et al. (2017) Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicology and Environment Safety, 141, 298‐305. DOI: https://doi.org/10.1016/j.ecoenv.2017.03.029

Henriksson, G., Åkesson, L., & Ewert, S. (2010). Uncertainty Regarding Waste Handling in Everyday Life. Sustainability, 2(9), 2799–2813. DOI: https://doi.org/10.3390/su2092799

Ho, B. T., Roberts, T. K., & Lucas, S. (2017). An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology 38(2), 308–320. DOI: https://doi.org/10.1080/07388551.2017.1355293

Howard, G. T. (2002). Biodegradation of polyurethane: A review. International Biodeterioration & Biodegradation, 49, 245-252. DOI: https://doi.org/10.1016/S0964-8305(02)00051-3

Howard, G.T., Norton, W.N., & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 23(4), 561-573. DOI: https://doi.org/10.1007/s10532-011-9533-6

Howell, E. A., Bograd, S. J., Morishige, C., Seki, M. P., & Polovina, J. J. (2012). On North Pacific circulation and associated marine debris concentration. Marine Pollution Bulletin, 65, 16–22. DOI: https://doi.org/10.1016/j.marpolbul.2011.04.034

Huang, Y. C., & Tsuang, W. (2014). Health effects associated with faulty application of spray polyurethane foam in residential homes. Environment Research, 134, 295-300. DOI: https://doi.org/10.1016/j.envres.2014.07.015

Huff, J., & Infante, P. F. (2011). Styrene exposure and risk of cancer. Mutagenesis, 26(5): 583-584. DOI: https://doi.org/10.1093/mutage/ger033

Iakovlev, V.V., Guelcher, S.,A., & Bendavid, R. (2015). Degradation of polypropylenein vivo: A microscopic analysis of meshes explanted from patients. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(2), 237-248. DOI: https://doi.org/10.1002/jbm.b.33502

Iiyoshi, Y., Tsutsumi, Y., & Nishida, T. (1998). Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. Journal of Wood Science, 44, 222–229. DOI: https://doi.org/10.1007/BF00521967

Jaakkola, J. J., & Knight, T. L. (2008). The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environment Health Perspective, 116(7), 845‐853. DOI: https://doi.org/10.1289/ehp.10846

Jaiswal, N., Pandey, V.P., & Dwivedi, U.N. (2015). Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography. International Journal of Biological Macromolecules, 72, 326–332. DOI: https://doi.org/10.1016/j.ijbiomac.2014.08.032

Janatunaim, R.Z., & Fibriani, A. (2020). Construction and cloning of Plastic-Degrading Recombinant Enzymes (MHETase). Recent Patents on Biotechnology, 14(3), 229-234. DOI: https://doi.org/10.2174/1872208314666200311104541

Kakudo, S., Negoro, S., Urabe, I., & Okada, H. (1993). New nylon oligomer degradation gene, nylC, on plasmid pOAD2 from a Flavobacterium strain encodes endo-type 6-aminohexanoate oligomer hydrolase: purification and characterization of the nylC gene product. Applied and Environment Microbiology, 59, 3978-3980. DOI: https://doi.org/10.1128/aem.59.11.3978-3980.1993

Kawai, F., Kawabata, T., & Oda, M. (2019). Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 103, 4253–4268. DOI: https://doi.org/10.1007/s00253-019-09717-y

Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., & Mangelsdorf, I. (2000). Vinyl chloride: still a cause for concern. Environmental Health Perspectives, 108(7), 579-588. DOI: https://doi.org/10.1289/ehp.00108579

Kim, J.W., Park, S.B., Tran, Q.G., Cho, D.H., et al. (2020). Functional expression of polyethylene terephthalate degrading enzyme (PETase) in green microalgae. Microbial Cell Factories,19(1), 97. DOI: https://doi.org/10.1186/s12934-020-01355-8

Kirbaş Z, Keskin N, & Güner A. (1999). Biodegradation of polyvinylchloride (PVC) by white rot fungi. Bulletin of Environment Contamination and Toxicology, 63(3), 335‐342. DOI: https://doi.org/10.1007/s001289900985

Krasowska, K., Heimowska A., & Rutkowska M. (2015). Environmental Degradability of Polyurethanes. In Das, C.K. (ed), Thermoplastic Elastomers - Synthesis and Applications (pp 75-93), IntechOpen online publication. DOI: 10.5772/60925. DOI: https://doi.org/10.5772/60925

Krupa, I., & Luyt, A. S. (2001). Thermal and mechanical properties of LLDPE cross-linked with gamma radiation. Polymer Degradation and Stability, 71(3), 361–366. DOI: https://doi.org/10.1016/S0141-3910(00)00186-5

Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A., & Devipriya, S. P. (2019) Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environmental Science and Pollution Research, 26(18), 18509-18519. DOI: https://doi.org/10.1007/s11356-019-05038-9

Kurtz, S. M., Muratoglu, O. K., Evans, M., & Edidin, A. A. (1999). Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials, 20(18), 1659–1688. DOI: https://doi.org/10.1016/S0142-9612(99)00053-8

LeMoine, C. M. R., Kelleher, B. M., Lagarde, R., Northam, C., et al. (2018). Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environmental Pollution, 243(Pt A), 591-600. DOI: https://doi.org/10.1016/j.envpol.2018.08.084

Li, B., Ding, Y., Cheng, X., Sheng, D., et al. (2019). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244, 125492. DOI: https://doi.org/10.1016/j.chemosphere.2019.125492

Lithner, D., Nordensvan, I., & Dave, G. (2011). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environmental Science and Pollution Research, 19(5), 1763–1772. DOI: https://doi.org/10.1007/s11356-011-0663-5

Liu, S., Wu, B., Wu, X., Wang, Z., & Chen, L. (2019). Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere, 221, 333-341. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.056

Loredo-Treviño, A., García, G., Velasco-Téllez, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2011). Polyurethane foam as substrate for fungal strains. Advances in Bioscience and Biotechnology, 2, 52-58. DOI: https://doi.org/10.4236/abb.2011.22009

Lund, V., Anderson-Glenna, M., Skjevrak, I., & Steffensen, I. L. (2011). Long-term study of migration of volatile organic compounds from cross-linked polyethylene (PEX) pipes and effects on drinking water quality. Journal of Water and Health, 9(3), 483–497. DOI: https://doi.org/10.2166/wh.2011.165

Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper, Rome.

Macali, A., Semenov, A., Venuti, V., Crupi, V., et al. (2018). Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Scientific Reports, 8(1), 6105. DOI: https://doi.org/10.1038/s41598-018-24427-7

Maddah, H. A. (2016). Polypropylene as a Promising Plastic: A Review. American Journal of Polymer Science, 6(1), 1-11.

Mahajan, N., & Gupta, P. (2015). New insights into the microbial degradation of polyurethanes. RSC Advances, 5(52), 41839–41854. DOI: https://doi.org/10.1039/C5RA04589D

Mander, G. J., Wang, H., Bodie, E., Wagner, J., et al. (2006). Use of laccase as a novel, versatile reporter system in filamentous fungi. Applied and Environmental Microbiology, 72(7), 5020-5026. DOI: https://doi.org/10.1128/AEM.00060-06

Mathot, V. B. F., Deblieck, R. A. C., & Pijpers, M.F.J. (1989). Molecular Structure, Crystallization and Morphology of Very Low Density Polyethylene (VLDPE). In: Lemstra P.J., Kleintjens L.A. (eds) Integration of Fundamental Polymer Science and Technology—3. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-1115-4_33

Matsumiya Y., Murata, N., Tanabe, E., Kubota, K., & Kubo, M. (2010). Isolation and characterization of an ether-type polyurethane-degrading microorganism and analysis of degradation mechanism by Alternaria sp. Journal of Applied Microbiology, 108, 1946–1953. DOI: https://doi.org/10.1111/j.1365-2672.2009.04600.x

Mattsson K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L. A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Science Reports, 7, 11452. DOI: https://doi.org/10.1038/s41598-017-10813-0

Metzelder, F., Hüffer, T., Sigmund, G., Slawek, S., et al. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of Total Environment, 657, 242-247. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.047

Miller, R. R., Newhook, R., & Poole, A. (1994). Styrene production, use, and human exposure. Critical Reviews in Toxicology, 24(S1), S1-S10. DOI: https://doi.org/10.3109/10408449409020137

Mohan, A. J., Sekhar, V. C., Bhaskar, T., & Nampoothiri, K. M. (2016). Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology, 213, 204-207. DOI: https://doi.org/10.1016/j.biortech.2016.03.021

Moog D, Schmitt J, Senger, J., Zarzycki, J., et al. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18, 171. DOI: https://doi.org/10.1186/s12934-019-1220-z

Mooney, A., Ward, P. G., & O'Connor, K. E. (2006). Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Applied Microbiology and Biotechnology, 72(1),1-10. DOI: https://doi.org/10.1007/s00253-006-0443-1

Muhonja, C. N., Makonde, H., Magoma, G., & Imbuga, M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One, 13(7), e0198446. DOI: https://doi.org/10.1371/journal.pone.0198446

Murray, F., & Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin, 62(6), 1207‐1217. DOI: https://doi.org/10.1016/j.marpolbul.2011.03.032

Nagai, K., Iida, K., Shimizu, K., Kinugasa, R., et al. (2014). Enzymatic hydrolysis of nylons: quantification of the reaction rate of nylon hydrolase for thin-layered nylons. Applied Microbiology and Biotechnology, 98(20), 8751‐8761. DOI: https://doi.org/10.1007/s00253-014-5885-2

Nakajima-Kambe, T., Onuma, F., Kimpara, N., & Nakahara, T. (1995). Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiology Letters, 129(1), 39-42. DOI: https://doi.org/10.1111/j.1574-6968.1995.tb07554.x

Negoro, S. (2000). Biodegradation of nylon oligomers. Applied Microbiology and Biotechnology, 54, 461- 466. DOI: https://doi.org/10.1007/s002530000434

Negoro, S., Ohki, T., Shibata, N., Sasa, K., et al. (2007). Nylon-oligomer degrading enzyme/substrate complex: catalytic mechanism of 6-aminohexanoate-dimer hydrolase. Journal of Molecular Biology, 370(1), 142‐156. DOI: https://doi.org/10.1016/j.jmb.2007.04.043

Nguyen, L. N., van de Merwe, J. P., Hai, F. I., Leusch, F. D. L., et al. (2016). Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: removal efficiency and effluent toxicity. Bioresource Technology, 200, 477–484. DOI: https://doi.org/10.1016/j.biortech.2015.10.054

Nomura, N., Shigeno-Akutsu, Y., Nakajima-Kambe, T., & Nakahara, T. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86(4), 339–345. DOI: https://doi.org/10.1016/S0922-338X(99)89001-1

Oberbeckmann S, Kreikemeyer B, & Labrenz M (2017). Environmental factors support the formation of specific bacterial assemblages on microplastics. Frontiers in Microbiology, 8, 2709 DOI: https://doi.org/10.3389/fmicb.2017.02709

Oster, R. H., & Carr, C. J. (1947). Anesthesia; narcosis with vinyl chloride. Anesthesiology, 8(4), 359-61. DOI: https://doi.org/10.1097/00000542-194707000-00003

Paço, A., Duarte, K., da Costa, J. P., Santos, P.S.M., et al. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586,10-15. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.017

Palm, G.J., Reisky, L., Böttcher, D., Muller, H., et al. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717. DOI: https://doi.org/10.1038/s41467-019-09326-3

Peñalva-Arana, D.C., Lynch, M., & Robertson, H.M., (2009). The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evolutionary Biology, 9, 79. DOI: https://doi.org/10.1186/1471-2148-9-79

Priyanka, N., & Tiwari, A. (2011). “Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future.” Journal of Environmental and Analytical Toxicology, 1(4), 1-4. DOI: https://doi.org/10.4172/2161-0525.1000111

Fralish, M.S., & Downs, J.W. (2021) Vinyl Chloride Toxicity. In: StatPearls (Internet) Treasure Island, Florida, USA. Available from: https://www.ncbi.nlm.nih.gov/books/NBK544334/

Prüst, M., Meijer, J., & Westerink, R.H.S. (2020) The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicology, 17(1):24. DOI: https://doi.org/10.1186/s12989-020-00358-y

Rabinovich, M.L., Bolobova, A. V., & Vasil’chenko, L. G. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: a review. Applied Biochemistry and Microbiology, 40, 1–17 DOI: https://doi.org/10.1023/B:ABIM.0000010343.73266.08

Rajeswari, M., Vennila, K., & Bhuvaneswari, V. (2015). Optimization of laccase production media by Bacilllus cereus TSS1 using Box-Behnken design. International Journal of Chemical and Pharmaceutical Sciences, 6(1), 95–101.

Ramalingappa, Sowmya, H. V., Krishnappa, M., & Thippeswamy, B. (2014). Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability, 17, 731–745. DOI: https://doi.org/10.1007/s10668-014-9571-4

Rastkari, N., ZareJeddi, M., Yunesian, M., & Ahmadkhaniha, R. (2017). The Effect of Storage Time, Temperature and Type of Packaging on the Release of Phthalate Esters into Packed Acidic Liquids. Food Technology and Biotechnology, 55(4):562‐569. DOI: https://doi.org/10.17113/ftb.55.04.17.5128

Ren, L., Men, L., Zhang, Z., Guan, F., et al. (2019). Biodegradation of Polyethylene by Enterobacter sp. D1 from the Guts of Wax Moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11), 1941. DOI: https://doi.org/10.3390/ijerph16111941

Ricotta, A., Unz, R., & Bollag, J. (1996). Role of a Laccase in the Degradation of Pentachlorophenol. Bulletin of Environmental Contamination and Toxicology, 57, 560 –567. DOI: https://doi.org/10.1007/s001289900227

Rochman, C. M., Hoh, E., Kurobe, T., & The, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3, 3263. DOI: https://doi.org/10.1038/srep03263

Ruj, B., Pandey, V., Jash, P., & Srivastava, V. K. (2015). Sorting of plastic waste for effective recycling. International Journal of Applied Sciences and Engineering Research, 4(4), 564-571.

Russell, J. R., Huang, J., Anand, P., Kucera, K., et al. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied Environmental Microbiology, 77, 6076 – 6084. DOI: https://doi.org/10.1128/AEM.00521-11

Ryan, P. G. (1987). The effects of ingested plastic on seabirds: Correlations between plastic load and body condition. Environmental Pollution, 46(2), 119–125. DOI: https://doi.org/10.1016/0269-7491(87)90197-7

Sangale, M. K., Shahnawaz, M., & Ade, A. B. (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Science Reports, 9, 5390 DOI: https://doi.org/10.1038/s41598-019-41448-y

Santo, M., Weitsman, R., & Sivan, A.(2013). The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84, 204-210. DOI: https://doi.org/10.1016/j.ibiod.2012.03.001

Sarmah, P., & Rout, J. (2018) Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25(33), 33508-33520. DOI: https://doi.org/10.1007/s11356-018-3079-7

Scalenghe, R. (2018). Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4(12), e00941. DOI: https://doi.org/10.1016/j.heliyon.2018.e00941

Sekhar, V. C., Nampoothiri, K. M., & Mohan, A, J. (2016). Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 318, 347–354. DOI: https://doi.org/10.1016/j.jhazmat.2016.07.008

Seo, H., Kim, S., Francis Son, H., Sagong, H.Y., et al. (2019). Production of extracellular PETase from Ideonellasakaiensis using sec-dependent signal peptides in E. coli. Biochemical and Biophysical Research Communications, 508(1), 250‐255. DOI: https://doi.org/10.1016/j.bbrc.2018.11.087

Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26, 246–265 DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005

Sharma, M., Dubey, A., & Pareek, A. (2014). Algal flora on degrading polythene waste. CIBTech Journal of Microbiology, 3, 43–47.

Singh, P., & Sharma, V. (2016). Integrated Plastic Waste Management: Environmental and Improved Health Approaches. Procedia Environmental Sciences, 35, 692-700. DOI: https://doi.org/10.1016/j.proenv.2016.07.068

Sinha, V., Patel, M. R., & Patel, J. V. (2010). Pet Waste Management by Chemical Recycling: A Review. Journal of Environmental Polymer Degradation, 18, 8–25. DOI: https://doi.org/10.1007/s10924-008-0106-7

Song, Y., Chengjin, C., Qiu, R., Hu, J., et al. (2019). Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution, 250, 447-455. DOI: https://doi.org/10.1016/j.envpol.2019.04.066

Sowmya, H.V., Ramalingappa, Krishnappa, M., & Thippeswamy, B. (2014) Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environmental Monitoring and Assessment, 186, 6577–6586. DOI: https://doi.org/10.1007/s10661-014-3875-6

Srivastava, P., Awasthi, S., Singh, P., Tiwary, D., & Mishra, P. K. (2017). Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 332. DOI: https://doi.org/10.1007/s13205-017-0959-3

Sternschuss, G., Ostergard, D. R., & Patel, H. (2012). Post-implantation alterations of polypropylene in the human. The Journal of Urology, 188(1), 27‐32. DOI: https://doi.org/10.1016/j.juro.2012.02.2559

Stock, V., Böhmert, L., Lisicki, E., Block, R., et al. (2019) Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Archives of Toxicology, 93(7), 1817-1833. DOI: https://doi.org/10.1007/s00204-019-02478-7

Sudhakar, M., Priyadarshini, C., Doble, M., Murthy, P. S., & Venkatesan, R. (2007). Marine bacteria mediated degradation of nylon 66 and 6. International Biodeterioration Biodegradation, 60, 144–51. DOI: https://doi.org/10.1016/j.ibiod.2007.02.002

Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.J., et al. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied Environmental Microbiology, 78(5), 1556-1562. DOI: https://doi.org/10.1128/AEM.06725-11

Sumathi, T., Viswanath, B., Sri Lakshmi, A., & SaiGopal, D. V. R. (2016). Production of Laccase by Cochliobolus sp. Isolated from Plastic Dumped Soils and Their Ability to Degrade Low Molecular Weight PVC. Biochemistry Research International, 2016, ID 9519527. https://doi.org/10.1155/2016/9519527 DOI: https://doi.org/10.1155/2016/9519527

Sussarellu, R., Suquet, M.,Thomas, Y., Lambert, C., et al. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences, 113(9), 2430 – 2435. DOI: https://doi.org/10.1073/pnas.1519019113

Tahir, L., Ishtiaq, A, M.,Zia, M., Atiq, N., et al.(2013) Production and characterization of esterase in Lantinustigrinus for degradation of polystyrene. Polish Journal of Microbiology, 62(1), 101-108. DOI: https://doi.org/10.33073/pjm-2013-015

Takehara, I., Fujii, T., Tanimoto, Y., Kato, D., Takeo, M., & Negoro, S. (2018). Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Applied Microbiology and Biotechnology, 102, 801–814 DOI: https://doi.org/10.1007/s00253-017-8657-y

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M.A., & Watanuki, Y. (2013). Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin, 69(1-2), 219-22. DOI: https://doi.org/10.1016/j.marpolbul.2012.12.010

Tanasupawat, S., Takehana, T., Yoshida, S., Hiraga, K., & Oda, K. (2016) Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2813‐2818. DOI: https://doi.org/10.1099/ijsem.0.001058

Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007).Potential for plastics to transport hydrophobic contaminants. Environmental Science and Technology, 41, 7759–7764. DOI: https://doi.org/10.1021/es071737s

Thevenon, F., Carroll, C., & Sousa, J. (2014). Plastic debris in the ocean: the characterization of marine plastics and their environmental impacts, situation analysis report, Vol. IUCN. 52 pp. Gland, Switzerland. DOI: https://doi.org/10.2305/IUCN.CH.2014.03.en

Thomas, K. V., Bråte, I. L. N., Blázquez, M., & Brooks, S. J. (2018). Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis). Science of The Total Environment, 626, 1310-1318. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.141

Tomita, K., Ikeda, N., & Ueno, A. (2003.) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnology Letters, 25(20), 1743‐1746. DOI: https://doi.org/10.1023/A:1026091711130

Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669‐7678. DOI: https://doi.org/10.1007/s00253-018-9195-y

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal Laccases and Their Applications in Bioremediation. Enzyme Research, 2014, 163242. doi: 10.1155/2014/163242. DOI: https://doi.org/10.1155/2014/163242

Wagoner, J. K. (1983). Toxicity of vinyl chloride and poly(vinyl chloride): a critical review. Environmental Health Perspectives, 52, 61‐66. DOI: https://doi.org/10.1289/ehp.835261

Wang, J., Li, Y., et al. (2019). Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution, 254(Pt B),113024. DOI: https://doi.org/10.1016/j.envpol.2019.113024

Webb, J. S., Nixon, M., Eastwood, I.M., Greenhalgh, M., et al. (2000). Fungal colonization and Biodeterioration of Plasticized Polyvinyl Chloride. Applied and Environmental Microbiology, 66, 3194-3200. DOI: https://doi.org/10.1128/AEM.66.8.3194-3200.2000

Wei, W., Huang, Q. S., Sun, J., Dai, X., & Ni, B. J. (2019). Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environmental Science & Technology, 53(16), 9604-9613. DOI: https://doi.org/10.1021/acs.est.9b02971

Wilcox, C., Puckridge, M., Schuyler, Q. A., Townsend, K., & Hardesty, B. D. (2018). A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Scientific Reports, 8(1), 12536. DOI: https://doi.org/10.1038/s41598-018-30038-z

Wu, X., Li, N., Ji, H., Zhang, H., et al. (2019). Determination and analysis of harmful components in synthetic running tracks from DOI: https://doi.org/10.1038/s41598-019-49142-9

Chinese primary and middle schools. Scientific Reports, 9(1), 12743, 1-10.

Xiong, X., Tu, Y., Chen, X., Jiang, X., et al. (2019). Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): influence of color and morphological features. Heliyon, 5(12), e03063. DOI: https://doi.org/10.1016/j.heliyon.2019.e03063

Xiong, X., Yang, M., Liu, C., Li, X., & Tang, D. (2017). Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation. Journal of Applied Physics, 122(3), 035104-1- 035104-7. DOI: https://doi.org/10.1063/1.4994797

Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. DOI: https://doi.org/10.1016/j.scitotenv.2019.135233

Yasuhira, K., Shibata, N., Mongami, G., Uedo, Y., et al. (2010). X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation. Journal of Biological and Chemical Research, 285, 1239–1248. DOI: https://doi.org/10.1074/jbc.M109.041285

Yasuhira, K., Tanaka, Y., Shibata, H., Kawashima, Y., et al. (2007). 6-Aminohexanoate oligomer hydrolases from the alkalophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2. Applied and Environmental Microbiology, 73(21), 7099‐7102. DOI: https://doi.org/10.1128/AEM.00777-07

Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of Polyethylene by a Soil Bacterium and AlkB Cloned Recombinant Cell. Journal of Bioremediation and Biodegradation, 3, 145.

Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. L. (2018). Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environmental Pollution, 236, 425-431. DOI: https://doi.org/10.1016/j.envpol.2018.01.094

Zimmermann W, & Wei R. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?. Microbial Biotechnology, 10(6), 1308-1322. DOI: https://doi.org/10.1111/1751-7915.12710

Downloads

Published

2022-02-28

How to Cite

Biswas, S. ., Das, A. ., Paul, J. ., Bhadra, T. ., & Saha, A. . (2022). Impact of the non-biodegradable plastics and role of microbes in biotic degradation. Journal of Experimental Biology and Agricultural Sciences, 10(1), 171–189. https://doi.org/10.18006/2022.10(1).171.189

Issue

Section

PROCEEDING OF BIONEXT-2021_REVIEW ARTICLES