Pterocarpus angolensis: Botanical, Chemical and Pharmacological Review of an Endangered Medicinal Plant of India

Authors

  • Shalini Roy Chowdhury Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Srijan Haldar Department of Biochemistry, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Ria Bhar Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Sumankalyan Das Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Abinit Saha Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Kuntal Pal Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Subhendu Bandyopadhyay Department of Biochemistry, School of Life Science and Biotechnology, Adamas University, Kolkata, India
  • Joydeep Paul Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India

DOI:

https://doi.org/10.18006/2022.10(1).150.156

Keywords:

Pterocarpus angolensis, Phytochemicals, Epicatechin, GC-MS Analysis, Heat Shock Proteins, Endangered

Abstract

Herbal products for primary health care are gaining huge interests of the people and the various healthcare professionals. This is mainly because of the local availability and cost-effectiveness of plant remedies over expensive modern treatments. Pterocarpus angolensis, a deciduous plant belonging to the family of Fabaceae is mainly found in the tropical regions of Africa. This tree is rich in medicinal properties which are immensely used by the locals in Africa for the treatment of ringworm infections, ulcers, urinary schistosomiasis, skin injury, etc. The extracts of   P. angolensis are treasured in Africa for their effectiveness against many diseases like gonorrhea, mouth diseases, diarrhea, etc. It is reported to have inhibitory activity against various pathogens like Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium because of the high concentration of bioactive compounds like flavonoids, tannins, and other phenolic compounds in the bark and leaves of the tree. Various research papers demonstrated the polar and nonpolar constituents of this plant showing antimicrobial, anti-plasmodial activities against Streptococcus agalactiae, Candida krusei, etc. In India, very few of these plants have been reported to be alive in the Darjeeling district, West Bengal. But, lack of proper documentation or research paper led to negligence related to the importance of this species and it has already been listed in the IUCN Red List of threatened species. The main objective of this review is to spread awareness about the conservation of the plant possessing such remarkable properties. Secondly, to provide an overview of the phytochemical screening of various important medicinal constituents that this plant possesses and this might lead to change in the field of modern medicine.

References

Abouelela, M., Abdelhamid, R., & Orabi, M. (2019). Phytochemical constituents of plant species of Pterocarpus (F: Leguminosae): a review. International Journal of Pharmacognosy and Phytochemical Research, 11, 264-281.

Abubakar, M. N., & Majinda, R. R. (2016). GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines, 3(1), 3. DOI: https://doi.org/10.3390/medicines3010003

Barstow, M., & Timberlake, J. (2018). Pterocarpus angolensis. The IUCN Red List of Threatened Species, 2018: e. T33190A67802808, 8235, 2018-1.

Bezuidenhoudt, B. C., Brandt, E. V., Roux, D. G., & van Rooyen, P. H. (1980). Novel α-methyldeoxybenzoins from the heartwood of Pterocarpus angolensis DC: absolute configuration and conformation of the first sesquiterpenylangolensis, and X-ray crystal structure of 4-O-α-cadinylangolensin. Journal of the Chemical Society, Perkin Transactions, 1, 2179-2183. DOI: https://doi.org/10.1039/P19800002179

Bezuidenhoudt, B. C., Brandt, E. V., & Roux, D. G. (1981). A novel α-hydroxydihydrochalcone from the heartwood of Pterocarpus angolensis DC: absolute configuration, synthesis, photochemical transformations, and conversion into α-methyldeoxybenzoins. Journal of the Chemical Society, Perkin Transactions, 1, 263-269. DOI: https://doi.org/10.1039/P19810000263

Bezuidenhoudt, B. C., Brandt, E. V., & Ferreira, D. (1987). Flavonoid analogues from Pterocarpus species. Phytochemistry, 26(2), 531-535. DOI: https://doi.org/10.1016/S0031-9422(00)81448-X

Cai, M., Lv, H., Cao, C., Zhang, L., Cao, R., & Xu, B. (2019). Evaluation of antimicrobial activity of Pterocarpus extracts. Industrial Crops and Products, 140, 111668. DOI: https://doi.org/10.1016/j.indcrop.2019.111668

Cheng, Y.W., & Fischer, M. (2018). Campylobacter. Elsevier, Amsterdam: the Netherlands.

Chipinga, J. V., Kamanula, J.F., Moyo, P.B.B. (2018). Efficacy of pterocarpus angolensis crude extracts against Candida krusei, Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli. Malawi Medical Journal, 30(4), 219-224. DOI: https://doi.org/10.4314/mmj.v30i4.2

Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. DOI: https://doi.org/10.1016/j.ijantimicag.2005.09.002

Hlashwayo, D. F., Barbosa, F., Langa, S., Sigauque, B., & Bila, C. G. (2020). A systematic review of In Vitro activity of medicinal plants from Sub-Saharan Africa against Campylobacter spp. Evidence-Based Complementary and Alternative Medicine, 2020, 9485364. DOI: 10.1155/2020/9485364. DOI: https://doi.org/10.1155/2020/9485364

Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews Molecular cell biology, 11(8), 579-592. DOI: https://doi.org/10.1038/nrm2941

Kim, C. R., & Hearnsberger, J. O. (1994). Gram negative bacteria inhibition by lactic acid culture and food preservatives on catfish fillets during refrigerated storage. Journal of Food Science, 59(3), 513-516. DOI: https://doi.org/10.1111/j.1365-2621.1994.tb05550.x

Luseba, D., Elgorashi, E. E., Ntloedibe, D. T., & Van Staden, J. (2007). Antibacterial, anti-inflammatory and mutagenic effects of some medicinal plants used in South Africa for the treatment of wounds and retained placenta in livestock. South African Journal of Botany, 73(3), 378-383. DOI: https://doi.org/10.1016/j.sajb.2007.03.003

Maroyi, A. (2013). Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. Journal of Ethnobiology and Ethnomedicine, 9(1), 1-18. DOI: https://doi.org/10.1186/1746-4269-9-31

Maurya, R., Ray, A.B., Duah, F. K., Slatkin, D. J., & Schiff Jr, P. L. (1984). Constituents of Pterocarpus marsupium. Journal of Natural Products, 47(1), 179-181. DOI: https://doi.org/10.1021/np50031a029

Mojeremane, W., & Lumbile, A. U. (2016). A review of Pterocarpus angolensis DC.(Mukwa) an important and threatened timber species of the miombo woodlands. Research Journal of Forestry, 10(1), 8-14. DOI: https://doi.org/10.3923/rjf.2016.8.14

Mulaudzi, R. B., Ndhlala, A. R., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2013). Anti-inflammatory and mutagenic evaluation of medicinal plants used by Venda people against venereal and related diseases. Journal of Ethnopharmacology, 146(1), 173-179. DOI: https://doi.org/10.1016/j.jep.2012.12.026

Ndamba, J., Nyazema, N., Makaza, N., Anderson, C., & Kaondera, K. C. (1994). Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. Journal of Ethnopharmacology, 42(2), 125-132. DOI: https://doi.org/10.1016/0378-8741(94)90106-6

Noufou, O., Wamtinga, S. R., André, T., Christine, B., et al. (2012). Pharmacological properties and related constituents of stem bark of Pterocarpus erinaceus Poir.(Fabaceae). Asian Pacific Journal of Tropical Medicine, 5(1), 46-51. DOI: https://doi.org/10.1016/S1995-7645(11)60244-7

Ramawat, K. G., & Mérillon, J. M. (eds.) (2008). Bioactive molecules and medicinal plants (pp. 22-18). Berlin: Springer. DOI: https://doi.org/10.1007/978-3-540-74603-4

Samie, A., Housein, A., Lall, N., & Meyer, J. J. M. (2009). Crude extracts of, and purified compounds from, Pterocarpus angolensis, and the essential oil of Lippia javanica: their in-vitro cytotoxicities and activities against selected bacteria and Entamoeba histolytica. Annals of Tropical Medicine & Parasitology, 103(5), 427-439. DOI: https://doi.org/10.1179/136485909X435111

Brand Features, Future Trend of Herbal Medicine Market. (2018). Scope at a CAGR of ~ 7.2 % during 2017 to 2023 | Increasing Demand for Safe Therapies (Internet). Retrieved from: https://www.reuters.com/brandfeatures/venturecapital/article?id=32992. DOI: https://doi.org/10.1016/j.focat.2018.07.005

Santos, E. S., Luís, Â., Gonçalves, J., Rosado, T., et al. (2020). Julbernardia paniculata and Pterocarpus angolensis: From ethnobotanical surveys to phytochemical characterization and bioactivities evaluation. Molecules, 25(8), 1828. DOI: https://doi.org/10.3390/molecules25081828

Seshadri, T. R. (1972). Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry, 11(3), 881-898. DOI: https://doi.org/10.1016/S0031-9422(00)88430-7

Shah, B. K. (1975). The chemical investigation of the heartwood of Pterocarpus marsupium roxb. Retrived from http://hdl.handle.net/10603/48362

Shonhai, A., Boshoff, A., & Blatch, G. L. (2007). The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Science, 16(9), 1803-1818. DOI: https://doi.org/10.1110/ps.072918107

Singh, G. P., Chandra, B. R., Bhattacharya, A., Akhouri, R. R., Singh, S. K., & Sharma, A. (2004). Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Molecular and Biochemical Parasitology, 137(2), 307-319. DOI: https://doi.org/10.1016/j.molbiopara.2004.05.016

Stahle, D. W., Mushove, P. T., Cleaveland, M. K., Roig, F., & Haynes, G. A. (1999). Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. Forest Ecology and Management, 124(2-3), 217-229. DOI: https://doi.org/10.1016/S0378-1127(99)00075-4

Takawira-Nyenya, R., Jansen, P. C. M., & Cardon, D. (2005). Pterocarpus angolensis DC. Plant Resources of Tropical Africa 3: Dyes and Tannins, 126-130.

Traoré, A.N., Anokwuru, C.P., Sigidi, M.T., et al. (2017). Phenolic contents, antioxidant activity and spectroscopic characteristics of Pterocarpus angolensis DC stem bark fractions. Journal of Traditional Medicine and Clinical Naturopathy, 16(3), 400-406.

Talekar, Y. P., Apte, K. G., Paygude, S. V., Tondare, P. R., & Parab, P. B. (2017). Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays. Journal of Ayurveda and Integrative Medicine, 8(2), 73-81. DOI: https://doi.org/10.1016/j.jaim.2016.11.007

Van der Riet, K., Van Rensburg, L., De Sousa Correia, RI, Mienie, LJ & Kruger, G. (1998). Germination of Pterocarpus angolensis DC. and evaluation of the possible antimicrobial action of the phloem sap. South African Journal of Plant and Soil, 15(4), 141-146. DOI: https://doi.org/10.1080/02571862.1998.10635132

Vickers, A., Zollman, C., & Lee, R. (2001). Herbal medicine. The Western Journal of Medicine, 175(2), 125. DOI: https://doi.org/10.1136/ewjm.175.2.125

World Health Organisation. (2010). Prevention and containment of antimicrobial resistance. Report of a regional meeting (internet). Chiang Mai, Thailand. Retrieved from: http://www. searo.who.int/entity/antimicrobial_resistance/BCT_Reports_SEAHLM-408.pdf.

World Health Organisation. (2013). Health effects of particulate

matter. Policy implications for countries in eastern Europe, Caucasus and central Asia (internet). Retrieved from: http// www.euro. who.int/__data/assets/.../Health-effects-of-particulate-matter-final-Eng. Pdf.

World Health Organization. (2017a) World Malaria Report. Retrieved from: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/.

World Health Organization. (2017b) Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva, Switzerland, Retrieved from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.

Zininga, T., Anokwuru, C. P., Sigidi, M. T., Tshisikhawe, M. P., et al. (2017). Extracts obtained from Pterocarpus angolensis DC and Ziziphus mucronata exhibit antiplasmodial activity and inhibit heat shock protein 70 (Hsp70) function. Molecules, 22(8), 1224. DOI: https://doi.org/10.3390/molecules22081224

Downloads

Published

2022-02-28

How to Cite

Chowdhury, S. R. ., Haldar, S. ., Bhar, R. ., Das, S. ., Saha, A. ., Pal, K. ., Bandyopadhyay, S. ., & Paul, J. . (2022). Pterocarpus angolensis: Botanical, Chemical and Pharmacological Review of an Endangered Medicinal Plant of India. Journal of Experimental Biology and Agricultural Sciences, 10(1), 150–156. https://doi.org/10.18006/2022.10(1).150.156

Issue

Section

PROCEEDING OF BIONEXT-2021_REVIEW ARTICLES